EFFECT OF CO2 DILUTION ON THE LAMINAR BURNING VELOCITIES OF PREMIXED METHANE/AIR FLAMES AT ELEVATED TEMPERATURE

被引:0
|
作者
Duva, B. C. [1 ]
Chance, L. E. [1 ]
Toulson, E. [1 ]
机构
[1] Michigan State Univ, Dept Mech Engn, Alternat Fuels & Combust Lab, E Lansing, MI 48824 USA
关键词
MARKSTEIN LENGTHS; CARBON-DIOXIDE; HIGH-PRESSURE; AIR MIXTURES; SPEEDS; HYDROGEN; PROPAGATION; IGNITION; DILUENTS; NUMBERS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With increased interest in reducing emissions, the staged combustion concept for gas turbine combustors is gaining in popularity. For this work, the effect of CO2 dilution on laminar burning velocities of premixed methane/air flames was investigated at elevated temperature through both experiments and numerical simulations. Validation of the experimental setup and methodology was completed through experimental testing of methane/air mixtures at 1 bar and 298 K. Following validation, high temperature experiments were conducted in an optically accessible constant volume combustion chamber at 1 bar and 473 K Laminar burning velocities of premixed methane/air flames with 0%, 5%, 10% and 15% CO2 dilution were determined using the constant pressure method enabled via schlieren visualization of the spherically propagating flame front. Results show that laminar burning velocities of methane/air mixtures at 1 bar increase by 106-145% with initial temperature increases from 298 K to 473 K Additions of 5%, 10% and 15% CO2 dilution at 1 bar and 473 K cause a 30-35%, 51-54% and 66-68% decrease in the laminar burning velocity, respectively. Numerical results were obtained with CHEMKIN [1] using the GRI-Mech 3.0 [2] and the San Diego [3] mechanisms. Excellent agreement was observed between the GRI-Mech 3.0 [2] and experimental data at phi <= 1.2 for methane/air mixtures at 1 bar and 298 K. However; for mixtures phi<1.3, 1 bar and 473 K, mixtures at phi<1.2 for 5% and 10% dilutions, and for mixtures at phi<0.9 for 15% dilution, laminar burning velocities predicted by the GRI-Mech 3.0 mechanism [2] ere slightly higher than experimental results. The San Diego mechanism [3] showed good agreement with experimental data phi <= 0.9 for methane/air mixtures at 1 bar and 298 K However, or mixtures at phi>0.9, 1 bar and 298 K, mixtures at phi>1.2, 1 bar and 473 K, and mixtures at phi>1.1 with 5%, 10% and 15% dilution, the San Diego mechanism [3] predicted slower laminar flame speeds than the experimental results. On the other hand, the laminar burning velocities predicted by the San Diego mechanism [3] were slightly faster than the experimental results for leaner mixtures. Additionally, the dilution, thermal-diffusion, and chemical effects of CO2 on the laminar burning velocities of methane/air mixtures were investigated numerically by diluting the mixtures with both chemically active and inactive CO2 following the determination of the most important elementary reactions on the burning rate through sensitivity analysis. Lastly, it was shown that CO2 dilution suppresses the flame instabilities during combustion, which is attributable to the increase in the burned gas Markstein length (L-b) with the addition of diluent.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [1] Effect of CO2 Dilution on the Laminar Burning Velocities of Premixed Methane/Air Flames at Elevated Temperature
    Duva, B. C.
    Chance, L. E.
    Toulson, E.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2020, 142 (03):
  • [2] The Effect of CO2 Dilution on the Laminar Burning Velocity of Premixed Methane/Air Flames
    Chan, Y. L.
    Zhu, M. M.
    Zhang, Z. Z.
    Liu, P. F.
    Zhang, D. K.
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 3048 - 3053
  • [3] Effect of CO content on laminar burning velocities of syngas-air premixed flames at elevated temperatures
    Varghese, Robin John
    Kolekar, Harshal
    Hariharan, Vishnu
    Kumar, Sudarshan
    FUEL, 2018, 214 : 144 - 153
  • [4] Effects of Dilution on Laminar Burning Velocity of Premixed Methane/Air Flames
    Galmiche, B.
    Halter, F.
    Foucher, F.
    Dagaut, P.
    ENERGY & FUELS, 2011, 25 (03) : 948 - 954
  • [5] Numerical analysis on the effects of CO2 dilution on the laminar burning velocity of premixed methane/air flame with elevated initial temperature and pressure
    Xie, Mingke
    Fu, Jianqin
    Zhang, Yongxiang
    Shu, Jun
    Ma, Yinjie
    Liu, Jingping
    Zeng, Dongjian
    FUEL, 2020, 264 (264)
  • [6] Laminar burning velocities of 2, 5-dimethylfuran-air premixed flames at elevated temperatures
    Wu, Xue-Song
    Huang, Zuo-Hua
    Jin, Chun
    Wei, Li-Xia
    Miao, Hai-Yan
    Wang, Xi-Bin
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2010, 31 (06): : 1073 - 1076
  • [7] Dilution effect of different combustion residuals on laminar burning velocities and burned gas Markstein lengths of premixed methane/air mixtures at elevated temperature
    Duva, Berk Can
    Chance, Lauren Elizabeth
    Toulson, Elisa
    FUEL, 2020, 267 (267)
  • [8] Effect of dilution on laminar burning characteristics of H2/CO/CO2/air premixed flames with various hydrogen fractions
    Li, Hong-Meng
    Li, Guo-Xiu
    Sun, Zuo-Yu
    Zhou, Zi-Hang
    Li, Yuan
    Yuan, Ye
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2016, 74 : 160 - 168
  • [9] Numerical study of the effect of CO2/H2O dilution on the laminar burning velocity of methane/air flames under elevated initial temperature and pressure
    Yang, Huiyong
    Wang, Xun
    Fu, Jianqin
    Liu, Jingping
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 101 (07): : 4092 - 4105
  • [10] Numerical analysis of the effect of CO2 on combustion characteristics of laminar premixed methane/air flames
    Xiang, Longkai
    Chu, Huaqiang
    Ren, Fei
    Gu, Mingyan
    JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (05) : 1487 - 1501