Composite photoanodes for photoelectrochemical solar water splitting

被引:236
|
作者
Sun, Jianwei [1 ]
Zhong, Diane K. [1 ]
Gamelin, Daniel R. [1 ]
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98195 USA
关键词
INTRAMOLECULAR ELECTRON-TRANSFER; OXYGEN-EVOLVING CATALYST; SEMICONDUCTOR ELECTRODES; HYDROGEN GENERATION; FERRIC-OXIDE; THIN-FILMS; ARTIFICIAL PHOTOSYNTHESIS; NANOSTRUCTURED HEMATITE; MOLECULAR CATALYSTS; OXIDATION CATALYSTS;
D O I
10.1039/c0ee00030b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photoelectrochemical (PEC) water splitting is an attractive approach to capturing and storing the earth's abundant solar energy influx. The challenging four-electron water-oxidation half-cell reaction has hindered this technology, giving rise to slow water oxidation kinetics at the photoanode surfaces relative to competitive loss processes. In this perspective, we review recent efforts to improve PEC efficiencies by modification of semiconductor photoanode surfaces with water-oxidation catalysts that can operate at low overpotentials. This approach allows separation of the tasks of photon absorption, charge separation, and surface catalysis, allowing each to be optimized independently. In particular, composite photoanodes marrying nanocrystalline and molecular/non-crystalline components provide flexibility in adjusting the properties of each component, but raise new challenges in interfacial chemistries.
引用
下载
收藏
页码:1252 / 1261
页数:10
相关论文
共 50 条
  • [1] Cobalt modified tungsten–titania nanotube composite photoanodes for photoelectrochemical solar water splitting
    Mohamad Mohsen Momeni
    Yousef Ghayeb
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 3318 - 3327
  • [2] Cobalt modified tungsten-titania nanotube composite photoanodes for photoelectrochemical solar water splitting
    Momeni, Mohamad Mohsen
    Ghayeb, Yousef
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (04) : 3318 - 3327
  • [3] Fabrication, characterization and photoelectrochemical behavior of Fe-TiO2 nanotubes composite photoanodes for solar water splitting
    Momeni, Mohamad Mohsen
    Ghayeb, Yousef
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 751 : 43 - 48
  • [4] Yttrium-doped hematite photoanodes for solar water splitting: Photoelectrochemical and electronic properties
    Kaambre, Tanel
    Vanags, Martins
    Parna, Rainer
    Kisand, Vambola
    Ignatans, Reinis
    Kleperis, Janis
    Sutka, Andris
    CERAMICS INTERNATIONAL, 2018, 44 (11) : 13218 - 13225
  • [5] Effects of interfacial layers on the photoelectrochemical properties of tantalum nitride photoanodes for solar water splitting
    Wang, Chizhong
    Hisatomi, Takashi
    Minegishi, Tsutomu
    Nakabayashi, Mamiko
    Shibata, Naoya
    Katayama, Masao
    Domen, Kazunari
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (36) : 13837 - 13843
  • [6] The effect of the photochemical environment on photoanodes for photoelectrochemical water splitting
    Huang, Xiaoqian
    Li, Yanfei
    Gao, Xiaoru
    Xue, Qihui
    Zhang, Ruikang
    Gao, Yuanzhe
    Han, Zhangang
    Shao, Mingfei
    DALTON TRANSACTIONS, 2020, 49 (35) : 12338 - 12344
  • [7] Solar water splitting with oxide photoanodes
    Gamelin, Daniel R.
    Zhong, Diane K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [8] Morphology control of the hematite photoanodes for photoelectrochemical water splitting
    Wang, Yujie
    Rong, Mingyue
    Zheng, Jiandong
    Rui, Zebao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 31667 - 31677
  • [9] Photoelectrochemical Solar Water Splitting: The Role of the Carbon Nanomaterials in Bismuth Vanadate Composite Photoanodes toward Efficient Charge Separation and Transport
    Prakash, Jyoti
    Prasad, Umesh
    Alexander, Rajath
    Bahadur, Jitendra
    Dasgupta, Kinshuk
    Kannan, Arunachala Nadar Mada
    LANGMUIR, 2019, 35 (45) : 14492 - 14504
  • [10] Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting
    Lee, Dong Ki
    Lee, Dongho
    Lumley, Margaret A.
    Choi, Kyoung-Shin
    CHEMICAL SOCIETY REVIEWS, 2019, 48 (07) : 2126 - 2157