CVD Growth of Carbon Nanostructures from Zirconia: Mechanisms and a Method for Enhancing Yield

被引:29
|
作者
Kudo, Akira [1 ]
Steiner, Stephen A., III [2 ]
Bayer, Bernhard C. [3 ]
Kidambi, Piran R. [3 ]
Hofmann, Stephan [3 ]
Strano, Michael S. [4 ]
Wardle, Brian L. [2 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[3] Univ Cambridge, Elect Engn Div, Dept Engn, Cambridge CB3 0FA, England
[4] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
CHEMICAL-VAPOR-DEPOSITION; X-RAY-DIFFRACTION; NANOTUBE GROWTH; LATTICE-PARAMETERS; CATALYST-SUPPORT; SCALE SYNTHESIS; SINGLE; NANOPARTICLES; GRAPHITIZATION; SPECTROSCOPY;
D O I
10.1021/ja509872y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor deposition (CVD) growth of fibrous carbon nanostructures from zirconia nanoparticles. Transmission electron microscope (TEM) observation reveals distinct differences in morphological features of carbon nanotubes and nanofibers (CNTs and CNFs) grown from zirconia nanoparticle catalysts versus typical oxide-supported metal nanoparticle catalysts. Nanofibers borne from zirconia lack an observable graphitic cage consistently found with nanotube-bearing metal nanoparticle catalysts. We observe two distinct growth modalities for zirconia: (1) turbostratic CNTs 2-3 times smaller in diameter than the nanoparticle localized at a nanoparticle corner, and (2) nonhollow CNFs with approximately the same diameter as the nanoparticle. Unlike metal nanoparticle catalysts, zirconia-based growth should proceed via surface-bound kinetics, and we propose a growth model where initiation occurs at nanoparticle corners. Utilizing these mechanistic insights, we further demonstrate that preannealing of zirconia nanoparticles with a solid-state amorphous carbon substrate enhances growth yield.
引用
收藏
页码:17808 / 17817
页数:10
相关论文
共 50 条
  • [1] CVD growth of carbon nanostructures from zirconia: Mechanisms and a method for enhancing yield
    20150100396428
    Wardle, Brian L., 1600, American Chemical Society (136):
  • [2] Synthesis of Carbon Nanostructures on Titanium Substrates by the CVD Method
    Svavilnyj, M. E.
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2010, 32 (11): : 1485 - 1492
  • [3] Mechanisms for Catalytic CVD Growth of Multiwalled Carbon Nanotubes
    Bajwa, Navdeep
    Li, Xuesong
    Ajayan, Pulickel M.
    Vajtai, Robert
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2008, 8 (11) : 6054 - 6064
  • [4] A New Strategy for Increasing the Yield of Carbon Nanotubes by the CVD Method
    Taleshi, F.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2014, 22 (10) : 921 - 927
  • [5] Parameters affecting the structure and yield of carbon nanotubes in CVD method
    Zheng, Guo-bin
    Sano, Hideaki
    Uchiyama, Yasuo
    ECO-MATERIALS PROCESSING AND DESIGN VIII, 2007, 544-545 : 773 - +
  • [6] Growth of Carbon Nanofibers on Activated Carbon by Thermal CVD Method
    Gu Jian-Yu
    Li Kai-Xi
    Liu Yue
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2009, 25 (08) : 1342 - 1348
  • [7] Shape-Controlled Growth of Carbon Nanostructures: Yield and Mechanism
    Ma, Yao
    Sun, Xiao
    Yang, Nianjun
    Xia, Junhai
    Zhang, Lei
    Jiang, Xin
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (35) : 12370 - 12375
  • [8] Carbon film growth on iron substrates by a CVD method
    Ding, YS
    Li, WN
    Shen, XF
    Galasso, FS
    Suib, SL
    DiCarlo, J
    SURFACE AND INTERFACE ANALYSIS, 2005, 37 (03) : 310 - 315
  • [9] On the kinetics of carbon nanotube growth by thermal CVD method
    Juang, ZY
    Lai, JF
    Weng, CH
    Lee, JH
    Lai, HJ
    Lai, TS
    Tsai, CH
    DIAMOND AND RELATED MATERIALS, 2004, 13 (11-12) : 2140 - 2146
  • [10] Synthesis of beta carbon nitride nanostructures by simple CVD-pyrolysis method
    Ramasamy, Venkatesh
    Pumlianmunga
    Karuppannan, Ramesh
    DIAMOND AND RELATED MATERIALS, 2021, 111