This paper addresses the preparation of polyaniline (PAni) and polypyrrole (PPy) nanostructures as humidity sensor elements. The semicrystalline microstructure and chemical structure of synthesized PAni and PPy were studied by X-ray diffraction and Fourier transform infrared spectroscopy, respectively. The morphology of these polymers was studied by scanning electron microscopy and transmission electron microscopy, indicating fibrillar and tubular nanostructures for PAni and PPy, respectively. The humidity sensing performances of sensors based on the prepared nanostructural PAni and PPy were investigated, and the sensing mechanisms of both systems have been discussed. The interesting reverse behaviors during humidity exposure of PAni- and PPy-based sensors in different water vapor concentrations have been comprehensively justified. The temperature dependency of the electrical conductivity for PAni and PPy samples was investigated. The UV-vis spectroscopy was used to study the effect of moisture on the electronic transport properties of PAni and PPy nanostructures.