The Order of Convergence of an Optimal Quadrature Formula With Derivative in the Space W2(2,1)

被引:1
|
作者
Hayotov, A. R. [1 ,2 ]
Rasulov, R. G. [1 ]
机构
[1] Uzbek Acad Sci, VI Romanovskiy Inst Math, 81 M Ulugbek Str, Tashkent 100170, Uzbekistan
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South Korea
关键词
optimal quadrature formula; Hilbert space; the error functional; SL Sobolev's method; discrete argument function; the order of convergence;
D O I
10.2298/FIL2011835H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present work is devoted to extension of the trapezoidal rule in the spaceW(2)((2,1)). The optimal quadrature formula is obtained by minimizing the error of the formula by coe fficients at values of the first derivative of an integrand. Using the discrete analog of the operator d(2)/dx(2) - 1 the explicit formulas for the coe fficients of the optimal quadrature formula are obtained. Furthermore, it is proved that the obtained quadrature formula is exact for any function of the set F = span {1, x, e(x), e(-x),}. Finally, in the space W-2((2,1)) the square of the norm of the error functional of the constructed quadrature formula is calculated. It is shown that the error of the obtained optimal quadrature formula is less than the error of the Euler-Maclaurin quadrature formula on the space L-2((2)) .
引用
收藏
页码:3835 / 3844
页数:10
相关论文
共 50 条
  • [1] OPTIMAL QUADRATURE FORMULAS FOR FOURIER COEFFICIENTS IN W2(m,m-1) SPACE
    Boltaev, Nurali
    Hayotov, Abdullo
    Milovanovic, Gradimir
    Shadimetov, Kholmat
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (04): : 1233 - 1266
  • [2] Optimal interpolation formulas in the space W2(m,m-1)
    Babaev, S. S.
    Hayotov, A. R.
    [J]. CALCOLO, 2019, 56 (03)
  • [3] Optimal quadrature formula in K2(P2) space
    Shadimetov, Kh. M.
    Hayotov, A. R.
    Azamov, S. S.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2012, 62 (12) : 1893 - 1909
  • [4] On an optimal quadrature formula for approximation of Fourier integrals in the space L2(1)
    Hayotov, Abdullo R.
    Jeon, Soomin
    Lee, Chang-Ock
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [5] A Problem of the Extrem Value of Bounded Linear Functional in the Space W2~1(R)(?)W2~1(R)
    刘振杰
    刘锐
    [J]. 哈尔滨理工大学学报, 2002, (03) : 22 - 24
  • [6] On an optimal quadrature formula in Sobolev space L2(m)(0,1)
    Shadimetov, Kh M.
    Hayotov, A. R.
    Nuraliev, F. A.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 243 : 91 - 112
  • [7] A high-dimensional CLT in W2 distance with near optimal convergence rate
    Zhai, Alex
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (3-4) : 821 - 845
  • [8] On Poincare-Friedrichs Type Inequalities for the Broken Sobolev Space W2,1
    Hoppe, R. H. W.
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (01) : 31 - 46
  • [9] SMOOTH BILINEAR FORMS OF L(2Rh(w1,w2)2) AND L(2Rh′(w1,w2)2)
    Kim, Sung Guen
    Lee, Chang Yeol
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2023, 29 (01): : 39 - 56
  • [10] Second Order Analysis on (P2(M), W2)
    Gigli, Nicola
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 216 (1018) : VII - +