Embedding compact surfaces into the 3-dimensional Euclidean space with maximum symmetry

被引:2
|
作者
Wang, Chao [1 ]
Wang, ShiCheng [2 ]
Zhang, YiMu [3 ]
Zimmermann, Bruno [4 ]
机构
[1] Jonsvannsveien 87 B,H0201, N-7050 Trondheim, Norway
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
[4] Univ Trieste, Dipartimento Matemat & Geosci, I-34100 Trieste, Italy
基金
中国国家自然科学基金;
关键词
finite group action; extendable action; symmetry of surface; maximum order;
D O I
10.1007/s11425-017-9078-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The symmetries of surfaces which can be embedded into the symmetries of the 3-dimensional Euclidean space a"e(3) are easier to feel by human's intuition. We give the maximum order of finite group actions on (a"e(3), I ) pound among all possible embedded closed/bordered surfaces with given geometric/algebraic genus greater than 1 in a"e(3). We also identify the topological types of the bordered surfaces realizing the maximum order, and find simple representative embeddings for such surfaces.
引用
收藏
页码:1599 / 1614
页数:16
相关论文
共 50 条
  • [1] Embedding compact surfaces into the 3-dimensional Euclidean space with maximum symmetry
    Chao Wang
    ShiCheng Wang
    YiMu Zhang
    Bruno Zimmermann
    Science China Mathematics, 2017, 60 : 1599 - 1614
  • [2] Embedding compact surfaces into the 3-dimensional Euclidean space with maximum symmetry
    WANG Chao
    WANG ShiCheng
    ZHANG YiMu
    ZIMMERMANN Bruno
    ScienceChina(Mathematics), 2017, 60 (09) : 1599 - 1614
  • [5] POLYNOMIAL TRANSLATION WEINGARTEN SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE
    Munteanu, M. I.
    Nistor, A. I.
    DIFFERENTIAL GEOMETRY, 2009, : 316 - 320
  • [7] Helicoidal surfaces with Delta(J)(r) = Ar in 3-dimensional Euclidean space
    Senoussi, Bendehiba
    Bekkar, Mohammed
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 437 - 448
  • [8] Embedding surfaces into S3 with maximum symmetry
    Wang, Chao
    Wang, Shicheng
    Zhang, Yimu
    Zimmermann, Bruno
    GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (04) : 1001 - 1045
  • [9] Special Curves in 3-Dimensional Euclidean Space
    Yuan Y.
    Li J.
    Liu H.-L.
    Liu, Hui-Li (liuhl@mail.neu.edu.cn), 1669, Northeast University (38): : 1669 - 1672
  • [10] DIFFERENTIATION OF SPINORS IN 3-DIMENSIONAL EUCLIDEAN SPACE
    DODDS, B
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1973, 6 (MAY): : 473 - 480