Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene

被引:18
|
作者
Luo, Birong [1 ]
Caridad, Jose M. [1 ]
Whelan, Patrick R. [1 ]
Thomsen, Joachim Dahl [1 ]
Mackenzie, David M. A. [1 ]
Cabo, Antonija Grubisic [2 ]
Mahatha, Sanjoy K. [2 ]
Bianchi, Marco [2 ]
Hofmann, Philip [2 ]
Jepsen, Peter Uhd [3 ]
Boggild, Peter [1 ]
Booth, Timothy J. [1 ]
机构
[1] Tech Univ Denmark, DTU Nanotech, 345E, DK-2800 Lyngby, Denmark
[2] Aarhus Univ, Dept Phys & Astron, Interdisciplinary Nanosci Ctr, DK-8000 Aarhus C, Denmark
[3] Tech Univ Denmark, DTU Foton, Orsteds Plads Bldg 343, DK-2800 Lyngby, Denmark
来源
2D MATERIALS | 2017年 / 4卷 / 04期
基金
新加坡国家研究基金会;
关键词
graphene; chemical vapor deposition; copper enclosure; sputter; single-crystal; MONOLAYER GRAPHENE; HIGH-QUALITY; OXYGEN; NUCLEATION; DEPOSITION; HYDROGEN; DOMAINS; GRAINS; FOILS; FILMS;
D O I
10.1088/2053-1583/aa85d5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show the suppression of nucleation density in chemical vapor deposited graphene through the use of a sputtered metal coating on the exterior of a copper catalyst enclosure, resulting in the growth of sub-centimeter scale single crystal graphene domains and complete elimination of multilayer growth. The sputtered coating suppresses nucleation density by acting as both a diffusion barrier and as a sink for excess carbon during the growth, reducing the carbon concentration in the interior of the enclosure. Field effect mobility of hBN-templated devices fabricated from graphene domains grown in this way show room temperature carrier mobilities of 12 000 cm(2) V-1 s(-1) and an absence of weak localization at low temperature. These results indicate a very low concentration of line and point defects in the grown films, which is further supported by Raman and transmission electron microscopic characterization.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Low-temperature growth of large-scale,single-crystalline graphene on Ir(111)
    郭辉
    陈辉
    阙炎德
    郑琦
    张余洋
    鲍丽宏
    黄立
    王业亮
    杜世萱
    高鸿钧
    Chinese Physics B, 2019, (05) : 15 - 19
  • [2] Low-temperature growth of large-scale, single-crystalline graphene on Ir(111)
    Guo, Hui
    Chen, Hui
    Que, Yande
    Zheng, Qi
    Zhang, Yu-Yang
    Bao, Li-Hong
    Huang, Li
    Wang, Ye-Liang
    Du, Shi-Xuan
    Gao, Hong-Jun
    CHINESE PHYSICS B, 2019, 28 (05)
  • [4] Large-scale preparation of single-crystalline gold nanoplates
    Luo, Yonglan
    MATERIALS LETTERS, 2007, 61 (06) : 1346 - 1349
  • [5] Large-scale growth of millimeter-long single-crystalline ZnS nanobelts
    Li, Jianye
    Zhang, Qi
    An, Lei
    Qin, Luchang
    Liu, Jie
    JOURNAL OF SOLID STATE CHEMISTRY, 2008, 181 (11) : 3116 - 3120
  • [6] Large-Scale Aqueous Synthesis and Growth Mechanism of Single-Crystalline Metal Nanoscrolls at Room Temperature: The Case of Nickel
    Zhang, Gaixia
    Sun, Shuhui
    Li, Ruying
    Zhang, Yong
    Cai, Mei
    Sun, Xueliang
    CHEMISTRY OF MATERIALS, 2010, 22 (16) : 4721 - 4727
  • [7] Large-scale synthesis of ultralong single-crystalline SiC nanowires
    Chen, Jianjun
    Shi, Qiang
    Gao, Linhui
    Zhu, Hongliang
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2010, 207 (11): : 2483 - 2486
  • [8] Growth of umbrella-like millimeter-scale single-crystalline graphene on liquid copper
    Zhang, Chitengfei
    Tu, Rong
    Dong, Mingdong
    Li, Jun
    Yang, Meijun
    Li, Qizhong
    Shi, Ji
    Li, Haiwen
    Ohmori, Hitoshi
    Zhang, Song
    Zhang, Lianmeng
    Goto, Takashi
    CARBON, 2019, 150 : 356 - 362
  • [9] Epitaxial growth mechanisms of single-crystalline GaN on single-crystalline graphene
    Feng, Yuxia
    Yang, Xuelin
    Zhang, Zhihong
    Zhang, Jie
    Wei, Jiaqi
    Zhou, Lixing
    Liu, Kaihui
    Xu, Fujun
    Ge, Weikun
    Shen, Bo
    CRYSTENGCOMM, 2021, 23 (32) : 5451 - 5455
  • [10] Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene
    Ago, Hiroki
    Ogawa, Yui
    Tsuji, Masaharu
    Mizuno, Seigi
    Hibino, Hiroki
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (16): : 2228 - 2236