Algebraic analysis of a model of two-dimensional gravity

被引:1
|
作者
Frolov, A. M. [1 ]
Kiriushcheva, N. [2 ]
Kuzmin, S. V. [2 ,3 ]
机构
[1] Univ Western Ontario, Dept Chem, London, ON, Canada
[2] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B9, Canada
[3] Huron Univ Coll, Fac Arts & Social Sci, London, ON, Canada
关键词
Two-dimensional; Action; Constraints; Algebra; EINSTEIN-HILBERT ACTION; HAMILTONIAN-FORMULATION; GENERAL-RELATIVITY; CANONICAL APPROACH; 1ST-ORDER FORM; DIMENSIONS; SYSTEMS; STATES;
D O I
10.1007/s10714-010-0935-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An algebraic analysis of the Hamiltonian formulation of the model two-dimensional gravity is performed. The crucial fact is an exact coincidence of the Poisson brackets algebra of the secondary constraints of this Hamiltonian formulation with the SO(2,1)-algebra. The eigenvectors of the canonical Hamiltonian H (c) are obtained and explicitly written in closed form.
引用
收藏
页码:1649 / 1666
页数:18
相关论文
共 50 条
  • [1] Algebraic analysis of a model of two-dimensional gravity
    A. M. Frolov
    N. Kiriushcheva
    S. V. Kuzmin
    [J]. General Relativity and Gravitation, 2010, 42 : 1649 - 1666
  • [2] Algebraic-geometrical formulation of two-dimensional quantum gravity
    Bonelli, G
    Marchetti, PA
    Matone, M
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (02) : 189 - 196
  • [3] On the quantization of a model of two-dimensional dilaton gravity
    Ahmed, MA
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (07): : 767 - 774
  • [4] A TWO-DIMENSIONAL MODEL FOR QUANTUM-GRAVITY
    POLCHINSKI, J
    [J]. NUCLEAR PHYSICS B, 1989, 324 (01) : 123 - 140
  • [5] Intensities of infrared transitions in the two-dimensional algebraic model
    Oss, S
    Temsamani, MA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (05): : 1773 - 1779
  • [6] Explicit algebraic influence coefficients: two-dimensional aquifer model
    Saffi, Mohamed
    Cheddadi, Abdelkhalek
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2008, 53 (02): : 409 - 420
  • [7] ALGEBRAIC DECAY OF SUCCESSIVE HARMONICS IN A MODEL TWO-DIMENSIONAL SYSTEM
    MOCHRIE, SGJ
    KORTAN, AR
    BIRGENEAU, RJ
    HORN, PM
    [J]. PHYSICAL REVIEW LETTERS, 1984, 53 (10) : 985 - 988
  • [8] Two-dimensional dilaton gravity
    Cavaglia, M
    [J]. PARTICLES, FIELDS, AND GRAVITATION, 1998, 453 : 442 - 448
  • [9] ANOMALIES IN TWO-DIMENSIONAL GRAVITY
    FUKUYAMA, T
    KAMIMURA, K
    [J]. PHYSICS LETTERS B, 1988, 200 (1-2) : 75 - 79
  • [10] A duality in two-dimensional gravity
    Ashok, Sujay K.
    Troost, Jan
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (05)