A KAM theorem for one dimensional Schrodinger equation with periodic boundary conditions

被引:74
|
作者
Geng, JS [1 ]
You, JG [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
Schrodinger equation; KAM tori; decay property; Birkhoff normal form;
D O I
10.1016/j.jde.2004.09.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, one-dimensional (1 D) nonlinear Schrodinger equation iu(t) - u(xx) + mu + partial derivativeg(u, (u) over bar)/partial derivative(u) over bar = 0, with Periodic Boundary Conditions is considered; m is not an element of (1)/(12)Z is a real parameter and the nonlinearity g(u, (u) over bar) = Sigma(j,l,j+l) a(jl)u(j-l)u, a(jl) = a(lj) is an element of R, a(22) not equal 0 is a real analytic function in a neighborhood of the origin. The KAM machinery is adapted to fit the above equation so as to construct small-amplitude periodic or quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dimensional dynamical system. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 56
页数:56
相关论文
共 50 条
  • [1] KAM for the derivative nonlinear Schrodinger equation with periodic boundary conditions
    Liu, Jianjun
    Yuan, Xiaoping
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) : 1627 - 1652
  • [2] KAM theorem for the nonlinear Schrodinger equation
    Grebert, B
    Kappeler, T
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (05): : 473 - 478
  • [3] KAM theorem for the nonlinear Schrodinger equation
    Grébert, B
    Kappeler, T
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 : 133 - 138
  • [4] An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrodinger equation
    Geng, Jiansheng
    Xu, Xindong
    You, Jiangong
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (06) : 5361 - 5402
  • [5] A DEGENERATE KAM THEOREM FOR PARTIAL DIFFERENTIAL EQUATIONS WITH PERIODIC BOUNDARY CONDITIONS
    Gao, Meina
    Liu, Jianjun
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (10) : 5911 - 5928
  • [6] Inflow boundary conditions for the time dependent one-dimensional Schrodinger equation
    Ben Abdallah, N
    Degond, P
    Gamba, I
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (12): : 1023 - 1028
  • [7] A KAM Theorem for Higher Dimensional Nonlinear Schrodinger Equations
    Geng, Jiansheng
    You, Jiangong
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2013, 25 (02) : 451 - 476
  • [8] Absorbing boundary conditions for the one-dimensional Schrodinger equation with an exterior repulsive potential
    Antoine, Xavier
    Besse, Christophe
    Klein, Pauline
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (02) : 312 - 335
  • [9] TRANSPARENT AND ARTIFICIAL BOUNDARY-CONDITIONS FOR THE ONE-DIMENSIONAL SCHRODINGER-EQUATION
    BRUNEAU, CH
    DIMENZA, L
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (01): : 89 - 94
  • [10] Effective Schrodinger equation for one-dimensional systems with rapidly oscillating boundary conditions
    Tretyakov, Nikolay
    Golosov, Pavel
    Kochanov, Anton
    [J]. 2018 10TH INTERNATIONAL CONGRESS ON ULTRA MODERN TELECOMMUNICATIONS AND CONTROL SYSTEMS AND WORKSHOPS (ICUMT 2018): EMERGING TECHNOLOGIES FOR CONNECTED SOCIETY, 2018,