Pluripolarity of sets with small Hausdorff measure

被引:4
|
作者
Labutin, DA [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia
关键词
Mathematics Subject Classification (1991):32F05;
D O I
10.1007/s002291020163
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any set E subset of C-n, n greater than or equal to 2, with finite Hausdorff measure Lambda ((log 1/r)-n) (E) < + infinity is pluripolar. The result is sharp with respect to the measuring function. The new idea in the proof is to combine a construction from potential theory, related to the real variational integral integral(Omega)\del u \(m), Omega subset of R-m, with properties of the piuricomplex relative extremal function for the Bedford-Taylor capacity.
引用
收藏
页码:163 / 167
页数:5
相关论文
共 50 条