Inertial Method for Bilevel Variational Inequality Problems with Fixed Point and Minimizer Point Constraints

被引:8
|
作者
Yimer, Seifu Endris [1 ,2 ,3 ]
Kumam, Poom [1 ,2 ,4 ]
Gebrie, Anteneh Getachew [3 ]
Wangkeeree, Rabian [5 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Fac Sci, SCL Fixed Point Lab 802, KMUTTFixed Point Res Lab, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] King Mongkuts Univ Technol Thonburi, Fac Sci, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] Debre Berhan Univ, Coll Computat & Nat Sci, Dept Math, POB 445, Debre Berhan, Ethiopia
[4] King Mongkuts Univ Technol Thonburi, Ctr Excellence Theoret & Computat Sci TaCS CoE, Fac Sci, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[5] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok 65000, Thailand
关键词
minimization problem; fixed point problem; inertial term; bilevel variational inequality; EXTRAGRADIENT ALGORITHM; ITERATIVE ALGORITHMS; STRONG-CONVERGENCE;
D O I
10.3390/math7090841
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce an iterative scheme with inertial effect using Mann iterative scheme and gradient-projection for solving the bilevel variational inequality problem over the intersection of the set of common fixed points of a finite number of nonexpansive mappings and the set of solution points of the constrained optimization problem. Under some mild conditions we obtain strong convergence of the proposed algorithm. Two examples of the proposed bilevel variational inequality problem are also shown through numerical results.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] An inertial method for solving bilevel variational inequality problems with fixed point constraints
    Yirga Abebe Belay
    Habtu Zegeye
    Oganeditse A. Boikanyo
    Dintle Kagiso
    Hagos Hailu Gidey
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (1)
  • [2] Modified Inertial Method for Solving Bilevel Split Quasimonotone Variational Inequality and Fixed Point Problems
    Maluleka, R.
    Ugwunnadi, G. C.
    Aphane, M.
    Abass, H. A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2025, 15 (01): : 169 - 190
  • [3] A HYBRID STEEPEST DESCENT METHOD FOR BILEVEL VARIATIONAL INEQUALITY PROBLEMS WITH THE FIXED POINT SET
    Ram, Tirth
    Iqbal, Mohd
    Bhagat, Zeenat
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2024, 15 (03): : 1 - 12
  • [4] Relaxed inertial Tseng extragradient method for variational inequality and fixed point problems
    Godwin, Emeka C.
    Alakoya, Timilehin O.
    Mewomo, Oluwatosin T.
    Yao, Jen-Chih
    APPLICABLE ANALYSIS, 2023, 102 (15) : 4253 - 4278
  • [5] Inertial subgradient extragradient with projection method for solving variational inequality and fixed point problems
    Maluleka, Rose
    Ugwunnadi, Godwin Chidi
    Aphane, Maggie
    AIMS MATHEMATICS, 2023, 8 (12): : 30102 - 30119
  • [6] An Algorithm for a Class of Bilevel Variational Inequalities with Split Variational Inequality and Fixed Point Problem Constraints
    Hai, Nguyen Minh
    Van, Le Huynh My
    Anh, Tran Viet
    ACTA MATHEMATICA VIETNAMICA, 2021, 46 (03) : 515 - 530
  • [7] Inertial Method for Solving Pseudomonotone Variational Inequality and Fixed Point Problems in Banach Spaces
    Maluleka, Rose
    Ugwunnadi, Godwin Chidi
    Aphane, Maggie
    AXIOMS, 2023, 12 (10)
  • [8] An Algorithm for a Class of Bilevel Variational Inequalities with Split Variational Inequality and Fixed Point Problem Constraints
    Nguyen Minh Hai
    Le Huynh My Van
    Tran Viet Anh
    Acta Mathematica Vietnamica, 2021, 46 : 515 - 530
  • [9] A projection-fixed point method for a class of bilevel variational inequalities with split fixed point constraints
    Tran Viet Anh
    Le Dung Muu
    OPTIMIZATION, 2016, 65 (06) : 1229 - 1243
  • [10] An Extragradient Method for Fixed Point Problems and Variational Inequality Problems
    Yonghong Yao
    Yeong-Cheng Liou
    Jen-Chih Yao
    Journal of Inequalities and Applications, 2007