Performance of self-centering devices containing superelastic SMA bars and their application via finite element analysis

被引:14
|
作者
Nguyen, Hoan D. [1 ,2 ]
Choi, Eunsoo [3 ]
Nguyen, Sy-Ngoc [1 ,2 ]
Pham, Thi-Kieu [4 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Construct Computat, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
[3] Hongik Univ, Dept Civil Engn, Seoul 04066, South Korea
[4] Univ Transport & Commun, Fac Civil Engn, Hanoi, Vietnam
基金
新加坡国家研究基金会;
关键词
Self-centering; Superelastic; SMA; Seismic performance; FEA; SHAPE-MEMORY ALLOYS; SEISMIC PERFORMANCE; STEEL FRAME; NUMERICAL SIMULATIONS; BRACING SYSTEM; BENDING BARS; CONCRETE; BEHAVIOR; BRIDGES; DESIGN;
D O I
10.1016/j.engstruct.2021.112113
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper aimed to use finite-element analysis to evaluate the seismic performance of self-centering devices, containing superelastic shape memory alloy (SMA) bars and their application. It should be noted that the devices could perform bending behaviors combining with tensions or compression. Cyclic performance of the devices under pulling and pushing actions have been modelled and verified by previous experimental results. Then, parametric studies were conducted to investigate the effect of design parameters on the stiffness of the selfcentering devices containing SMA bars. An application of the device to a steel frame was proposed and modelled. Results shown that the increasement of diameters and number of SMA bars have positive effects while the increase of bars length and moment arms have negative effects on the effective stiffness of the devices. Besides, with the same area, the use of SMA bars in the rectangular shape gives higher effective stiffness than the use of those in the circular shape. However, with the same moment of inertia, the former gives lower effective stiffness than the latter. The hysteretic responses of a steel frame equipped with SMA devices showed perfect selfcentering capacity with symmetric behavior. The devices are effective to enhance the seismic performance of steel frames.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] SMA bending bars as self-centering and damping devices
    Choi, Eunsoo
    Mohammadzadeh, Behzad
    Kim, Hee Sun
    SMART MATERIALS AND STRUCTURES, 2019, 28 (02)
  • [2] Development of superelastic SMA angles as seismic-resistant self-centering devices
    Wang, Bin
    Zhu, Songye
    Chen, Kaixin
    Huang, Jiahao
    ENGINEERING STRUCTURES, 2020, 218
  • [3] Numerical simulation on self-centering beam-column joints reinforced with superelastic SMA bars
    Qian H.
    Li Z.-A.
    Pei J.-Z.
    Kang L.-P.
    Gongcheng Lixue/Engineering Mechanics, 2020, 37 (11): : 135 - 145
  • [4] Cyclic behavior of superelastic SMA cable and its application in an innovative self-centering BRB
    Shi, Yifei
    Qian, Hui
    Kang, Liping
    Li, Zongao
    Xia, Like
    SMART MATERIALS AND STRUCTURES, 2021, 30 (09)
  • [5] Behavior and Design of Self-Centering Energy Dissipative Devices Equipped with Superelastic SMA Ring Springs
    Fang, Cheng
    Wang, Wei
    Zhang, Ao
    Sause, Richard
    Ricles, James
    Chen, Yiyi
    JOURNAL OF STRUCTURAL ENGINEERING, 2019, 145 (10)
  • [6] Seismic performance of resilient self-centering bridge piers equipped with SMA bars
    Kocakaplan, Sedef
    Ahmadi, Ehsan
    Kashani, Mohammad M.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-BRIDGE ENGINEERING, 2024,
  • [7] Experimental study on the seismic performance of self-centering bridge piers incorporating ECC and superelastic SMA bars in the plastic hinge regions
    Qian, Hui
    Ye, Yixiang
    Yan, Changbin
    Jin, Guangyao
    Li, Can
    Shi, Yifei
    STRUCTURES, 2022, 46 : 1955 - 1967
  • [8] Superelastic SMA U-shaped dampers with self-centering functions
    Wang, Bin
    Zhu, Songye
    SMART MATERIALS AND STRUCTURES, 2018, 27 (05)
  • [9] Behavior and application of self-centering dampers equipped with buckling-restrained SMA bars
    Qiu, Canxing
    Fang, Cheng
    Liang, Dong
    Du, Xiuli
    Yam, Michael C. H.
    SMART MATERIALS AND STRUCTURES, 2020, 29 (03)
  • [10] A review and comparative study on the performance of self-centering damping devices based on SMA
    Qian, Hui
    Luo, Hongbo
    Shi, Yifei
    Lu, Qianqian
    Umar, Muhammad
    STRUCTURES, 2025, 71