Membrane properties required for post-combustion CO2 capture at coal-fired power plants

被引:93
|
作者
Roussanaly, Simon [1 ]
Anantharaman, Rahul [1 ]
Lindqvist, Karl [1 ]
Zhai, Haibo [2 ]
Rubin, Edward [2 ]
机构
[1] SINTEF Energy Res, Sem Saelandsvei 11, NO-7465 Trondheim, Norway
[2] Carnegie Mellon Univ, Dept Engn & Publ Policy, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Post-combustion CO; capture; Membrane separation; Membrane properties; Coal power plant; Techno-economic benchmarking; CARBON-DIOXIDE; TECHNOECONOMIC PERFORMANCE; MULTICRITERIA ASSESSMENT; FACILITATED TRANSPORT; HYBRID MEMBRANE; FLUE-GAS; FEASIBILITY;
D O I
10.1016/j.memsci.2016.03.035
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper focuses on the identification of membrane properties required to enable cost-competitive post-combustion CO2 capture from a coal power plant using membrane-based processes. In order to identify such properties, a numerical version of the attainable region approach proposed by Lindqvist et al., built as part of the of the iCCS tool developed by SINTEF Energy Research, is used to identify and assess the technical and cost performances of the optimal membrane process for a given set of membrane properties (selectivity and permeance). This numerical model is used to assess the cost performances of 1600 sets of membrane properties (selectivity and permeance) for post-combustion CO2 capture from a coal power plant as defined by the European Benchmarking Task Force and compare it with the reference commercial solvent concept (MEA) to identify the membrane properties required in a base case that treats both membrane- and MEA-based processes as mature and developed. The results show that to reach this competiveness with simple process configurations requires a permeance of at least 3 m(3)(STP)/(m(2).h.bar) with high selectivity, or alternatively a selectivity of at least 65 with high permeances. These limits can be reduced to permeances as low as 1 m(3)(STP)/(m(2).h.bar) with high selectivity, or selectivities as low as 30 with high permeances, when advanced membrane process configurations are being considered. The assessments of five additional cases quantify how additional costs associated with demonstration projects and higher membrane module costs can significantly increase the selectivities and permeances required to compete with MEA based capture. In order to link the membrane development works to the results presented in this paper, the constraint introduced by Robeson's upper bound limitation, as well as data available in the literature on membrane modules and polymeric materials, are compared with the results obtained. The inclusion of the upper bound shows that the capacity to generate thin membrane film layers is important in order to avoid reducing the range of membrane properties, in which diffusion governed membrane can be interesting in term of cost performances, especially in cases that take demonstration and/or higher module costs into consideration. The comparison with literature data shows that while several membranes and polymeric materials have the potential to be cost-competitive with further properties improvements, and once membrane-based CO2 capture becomes mature and demonstrated, financial support will be required to demonstrate and help mature the technology. Finally, ways to use the results presented here for membrane development by membrane development experts, for membrane selection by industrial users, and for technology development and demonstration support by decision-makers are discussed. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:250 / 264
页数:15
相关论文
共 50 条
  • [1] A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants
    Wang, Yuan
    Zhao, Li
    Otto, Alexander
    Robinius, Martin
    Stolten, Detlef
    [J]. 13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 650 - 665
  • [2] CO2 post-combustion capture in coal-fired power plants integrated with solar systems
    Carapellucci, R.
    Giordano, L.
    Vaccarelli, M.
    [J]. 33RD UIT (ITALIAN UNION OF THERMO-FLUID DYNAMICS) HEAT TRANSFER CONFERENCE, 2015, 655
  • [3] Dynamic operation of post-combustion CO2 capture in Australian coal-fired power plants
    Bui, Mai
    Gunawan, Indra
    Verheyen, T. Vincent
    Meuleman, Erik
    Feron, Paul
    [J]. 12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1368 - 1375
  • [4] Capture-ready supercritical coal-fired power plants and flexible post-combustion CO2 capture
    Lucquiaud, Mathieu
    Chalmers, Hannah
    Gibbins, Jon
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 1411 - 1418
  • [5] Dynamic modelling and simulation of a post-combustion CO2 capture process for coal-fired power plants
    Jianlin Li
    Ti Wang
    Pei Liu
    Zheng Li
    [J]. Frontiers of Chemical Science and Engineering, 2022, 16 : 198 - 209
  • [6] Model Predictive Control of Post-combustion CO2 Capture System for Coal-fired Power Plants
    Dai, Baoxin
    Wu, Xiao
    Liang, Xiufan
    Shen, Jiong
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 9315 - 9320
  • [7] Systems Analysis of Ionic Liquids for Post-combustion CO2 Capture at Coal-fired Power Plants
    Zhai, Haibo
    Rubin, Edward S.
    [J]. 12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1321 - 1328
  • [8] Evaluation of cooling requirements of post-combustion CO2 capture applied to coal-fired power plants
    Brandl, Patrick
    Soltani, Salman Masoudi
    Fennell, Paul S.
    Mac Dowell, Niall
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2017, 122 : 1 - 10
  • [9] Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants
    Oexmann, Jochen
    Kather, Alfons
    Linnenberg, Sebastian
    Liebenthal, Ulrich
    [J]. GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2012, 2 (02): : 80 - 98
  • [10] Dynamic modelling and simulation of a post-combustion CO2 capture process for coal-fired power plants
    Li, Jianlin
    Wang, Ti
    Liu, Pei
    Li, Zheng
    [J]. FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2022, 16 (02) : 198 - 209