Surface Reconstruction Engineering with Synergistic Effect of Mixed-Salt Passivation Treatment toward Efficient and Stable Perovskite Solar Cells

被引:72
|
作者
Suo, Jiajia [1 ]
Yang, Bowen [1 ]
Mosconi, Edoardo [2 ]
Choi, Hyeon-Seo [3 ]
Kim, YeonJu [1 ]
Zakeeruddin, Shaik M. [4 ]
De Angelis, Filippo [2 ,5 ]
Gratzel, Michael [4 ]
Kim, Hui-Seon [3 ]
Hagfeldt, Anders [1 ,6 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Photomol Sci LSPM, Inst Chem Sci & Engn, Sch Basic Sci, CH-1015 Lausanne, Switzerland
[2] Ist CNR Sci & Tecnol Chim Giulio Natta CNR SCITEC, Computat Lab Hybrid Organ Photovolta CLHYO, I-06123 Perugia, Italy
[3] Inha Univ, Dept Chem & Chem Engn, Incheon 22212, South Korea
[4] Ecole Polytech Fed Lausanne, Lab Photon & Interfaces LPI, Inst Chem Sci & Engn, Sch Basic Sci, CH-1015 Lausanne, Switzerland
[5] Univ Perugia, Dept Chem Biol & Biotechnol, I-06123 Perugia, Italy
[6] Uppsala Univ, Dept Chem, Angstrom Lab, Box 523, SE-75120 Uppsala, Sweden
基金
瑞士国家科学基金会; 新加坡国家研究基金会;
关键词
mixed-salt passivation; perovskite solar cells; surface reconstruction engineering; synergistic effects; OPEN-CIRCUIT VOLTAGE; HIGHLY EFFICIENT; HALIDE PEROVSKITES; STABILITY; PERFORMANCE;
D O I
10.1002/adfm.202102902
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Managing Interface Defects via Mixed-Salt Passivation toward Efficient and Stable Perovskite Solar Cells
    Qiu, Fazheng
    Liu, Qiuju
    Liu, Yanfeng
    Wu, Jinpeng
    SMALL, 2023, 19 (50)
  • [2] Surface Passivation Toward Efficient and Stable Perovskite Solar Cells
    Xia, Junmin
    Liang, Chao
    Gu, Hao
    Mei, Shiliang
    Li, Shengwen
    Zhang, Nan
    Chen, Shi
    Cai, Yongqing
    Xing, Guichuan
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (01)
  • [3] Surface Passivation Toward Efficient and Stable Perovskite Solar Cells
    Junmin Xia
    Chao Liang
    Hao Gu
    Shiliang Mei
    Shengwen Li
    Nan Zhang
    Shi Chen
    Yongqing Cai
    Guichuan Xing
    Energy & Environmental Materials, 2023, 6 (01) : 6 - 29
  • [4] Surface Passivation Toward Efficient and Stable Perovskite Solar Cells
    Junmin Xia
    Chao Liang
    Hao Gu
    Shiliang Mei
    Shengwen Li
    Nan Zhang
    Shi Chen
    Yongqing Cai
    Guichuan Xing
    Energy & Environmental Materials , 2023, (01) : 6 - 29
  • [5] Outstanding Passivation Effect by a Mixed-Salt Interlayer with Internal Interactions in Perovskite Solar Cells
    Yang, Bowen
    Suo, Jiajia
    Mosconi, Edoardo
    Ricciarelli, Damiano
    Tress, Wolfgang
    De Angelis, Filippo
    Kim, Hui-Seon
    Hagfeldt, Anders
    ACS ENERGY LETTERS, 2020, 5 (10) : 3159 - 3167
  • [6] Synergistic defect passivation and strain compensation toward efficient and stable perovskite solar cells
    Bian, Liqiang
    Xin, Zhe
    Zhao, Yuanyuan
    Gao, Lei
    Dou, Zhi
    Li, Linde
    Guo, Qiyao
    Duan, Jialong
    Dou, Jie
    Wang, Yingli
    Zhang, Xinyu
    Jiang, Chi
    Sun, Liqing
    Zhang, Qiang
    Tang, Qunwei
    JOURNAL OF ENERGY CHEMISTRY, 2024, 98 : 327 - 333
  • [7] Synergistic defect passivation and strain compensation toward efficient and stable perovskite solar cells
    Liqiang Bian
    Zhe Xin
    Yuanyuan Zhao
    Lei Gao
    Zhi Dou
    Linde Li
    Qiyao Guo
    Jialong Duan
    Jie Dou
    Yingli Wang
    Xinyu Zhang
    Chi Jiang
    Liqing Sun
    Qiang Zhang
    Qunwei Tang
    Journal of Energy Chemistry, 2024, 98 (11) : 327 - 333
  • [8] Surface passivation by CTAB toward highly efficient and stable perovskite solar cells
    Sha, Nian
    Bala, Hari
    Zhang, Bowen
    Zhang, Wei
    An, Xiangli
    Chen, Diandian
    Zhao, Zhiyong
    APPLIED SURFACE SCIENCE, 2023, 635
  • [9] Synergistic Defect Passivation by the Treatment of Ionic Liquids for Efficient and Stable Perovskite Solar Cells
    Zhang, Zelong
    Jiang, Zhixuan
    Ji, Wenxi
    Fu, Jianfei
    Wu, Tiao
    Wu, Wenting
    Rui, Dong
    Xu, Pan
    Zhou, Yi
    Dong, Bin
    Song, Bo
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2023, 4 (03):
  • [10] Synergistic Interface Layer Optimization and Surface Passivation with Fluorocarbon Molecules toward Efficient and Stable Inverted Planar Perovskite Solar Cells
    Zhou, Long
    Su, Jie
    Lin, Zhenhua
    Guo, Xing
    Ma, Jing
    Li, Tao
    Zhang, Jincheng
    Chang, Jingjing
    Hao, Yue
    RESEARCH, 2021, 2021