Correlation of Electrical Properties and Acoustic Loss in Single Crystalline Lithium Niobate-Tantalate Solid Solutions at Elevated Temperatures

被引:18
|
作者
Suhak, Yuriy [1 ]
Roshchupkin, Dmitry [2 ]
Redkin, Boris [3 ]
Kabir, Ahsanul [1 ]
Jerliu, Bujar [1 ]
Ganschow, Steffen [4 ]
Fritze, Holger [1 ]
机构
[1] Tech Univ Clausthal, Inst Energy Res & Phys Technol, Stollen 19B, D-38640 Goslar, Germany
[2] Russian Acad Sci, Inst Microelect Technol & High Pur Mat, Academician Ossipyan Str 6, Chernogolovka 142432, Russia
[3] Russian Acad Sci, Inst Solid State Phys, Academician Ossipyan Str 2, Chernogolovka 142432, Russia
[4] Leibniz Inst Kristallzuchtung, Max Born Str 2, D-12489 Berlin, Germany
来源
CRYSTALS | 2021年 / 11卷 / 04期
基金
俄罗斯基础研究基金会;
关键词
lithium niobate-tantalate; piezoelectric; acoustic; high-temperature; sensor; Q-factor; BAW resonator;
D O I
10.3390/cryst11040398
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Electrical conductivity and acoustic loss Q(-1) of single crystalline Li(Nb,Ta)O-3 solid solutions (LNT) are studied as a function of temperature by means of impedance spectroscopy and resonant piezoelectric spectroscopy, respectively. For this purpose, bulk acoustic wave resonators with two different Nb/Ta ratios are investigated. The obtained results are compared to those previously reported for congruent LiNbO3. The temperature dependent electrical conductivity of LNT and LiNbO3 show similar behavior in air at high temperatures from 400 to 700 degrees C. Therefore, it is concluded that the dominant transport mechanism in LNT is the same as in LN, which is the Li transport via Li vacancies. Further, it is shown that losses in LNT strongly increase above about 500 degrees C, which is interpreted to originate from conductivity-related relaxation mechanism. Finally, it is shown that LNT bulk acoustic resonators exhibit significantly lower loss, comparing to that of LiNbO3.
引用
下载
收藏
页数:16
相关论文
共 11 条
  • [1] Structure and properties of proton exchange layers in lithium niobate-tantalate solid solutions
    Sosunov, A. V.
    Petukhov, I. V.
    Kornilicyn, A. R.
    Mololkin, A. A.
    Komarnitskaya, E. A.
    Tabachkova, N. Yu.
    Kuneva, M.
    SOLID STATE IONICS, 2024, 417
  • [2] Ferroelectric Hysteresis Measurement in the Lithium Niobate-Lithium Tantalate Single-Crystalline Family: Prospects for Lithium Niobate-Tantalate
    Koppitz, Boris
    Ganschow, Steffen
    Ruesing, Michael
    Eng, Lukas M.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2024,
  • [3] Charge transport and acoustic loss in lithium niobate-lithium tantalate solid solutions at temperatures up to 900 °C
    Yakhnevych, U.
    Kofahl, C.
    Hurskyy, S.
    Ganschow, S.
    Suhak, Y.
    Schmidt, H.
    Fritze, H.
    SOLID STATE IONICS, 2023, 392
  • [4] Optical Properties of Crystals of Lithium Niobate-Tantalate Solid Solutions LiNb1-xTaxO3
    Zabelina, E. V.
    Mololkin, A. A.
    Kozlova, N. S.
    Kasimova, V. M.
    Fakhrtdinov, R. R.
    Umylin, V. E.
    Sosunov, A. V.
    CRYSTALLOGRAPHY REPORTS, 2023, 68 (07) : 1173 - 1179
  • [5] Single crystals of ferroelectric lithium niobate-tantalate LiNb1-xTaxO3 solid solutions for high-temperature sensor and actuator applications
    Roshchupkin, Dmitry
    Emelin, Evgenii
    Plotitcyna, Olga
    Rashid, Fahrtdinov
    Irzhak, Dmitry
    Karandashev, Vasilii
    Orlova, Tatiana
    Targonskaya, Natalya
    Sakharov, Sergey
    Mololkin, Anatolii
    Redkin, Boris
    Fritze, Holger
    Suhak, Yuri
    Kovalev, Dmitry
    Vadilonga, Simone
    Ortega, Luc
    Leitenberger, Wolfram
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2020, 76 : 1071 - 1076
  • [6] GROWTH, X-RAY STRUCTURE AND OPTICAL INVESTIGATIONS OF EPITAXIAL-FILMS OF SOLID-SOLUTIONS OF LITHIUM NIOBATE-TANTALATE
    MADOYAN, RS
    SARKISYAN, GN
    KHACHATURYAN, OA
    CRYSTAL RESEARCH AND TECHNOLOGY, 1985, 20 (08) : 1031 - 1040
  • [7] Oxygen partial pressure and temperature dependent electrical conductivity of lithium-niobate-tantalate solid solutions
    Yakhnevych, U.
    El Azzouzi, F.
    Bernhardt, F.
    Kofahl, C.
    Suhak, Y.
    Sanna, S.
    Becker, K. -D.
    Schmidt, H.
    Ganschow, S.
    Fritze, H.
    SOLID STATE IONICS, 2024, 407
  • [8] Structural, electrical and ferroelectric properties of lithium niobate-bismuth ferrite solid solutions
    De, Manojit
    Hajra, Sugato
    Tiwari, Rashmi
    Sahoo, Sushrisangita
    Choudhary, R. N. P.
    Tewari, H. S.
    SOLID STATE SCIENCES, 2019, 93 : 1 - 6
  • [9] Thermal conductivity in solid solutions of lithium niobate tantalate single crystals from 300 K up to 1300 K
    Bashir, Umar
    Rüsing, Michael
    Klimm, Detlef
    Blukis, Roberts
    Koppitz, Boris
    Eng, Lukas M.
    Bickermann, Matthias
    Ganschow, Steffen
    Journal of Alloys and Compounds, 2024, 1008
  • [10] Electrical properties of lead-free Fe-doped niobium-rich potassium lithium tantalate niobate single crystals
    Li, Yang
    Li, Jun
    Zhou, Zhongxiang
    Guo, Ruyan
    Bhalla, Amar S.
    EPL, 2013, 104 (05)