Fuzzy Stochastic Automata for reactive learning and hybrid control

被引:0
|
作者
Rigatos, GG [1 ]
机构
[1] Univ Patras, Ind Syst Inst, GR-26500 Patras, Greece
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy Stochastic Automata (FSA) are suitable for the modelling of the reactive (memoryless) learning and for the control of hybrid systems. The concept of FSA is to switch between a fuzzy increase and a fuzzy decrease of the control action according to the sign of the product e e, where e = x - x(d) is the error of the system's output and is its first derivative. The learning in FSA has stochastic features. The applications of FSA concern mainly autonomous systems and intelligent robots.
引用
下载
收藏
页码:366 / 377
页数:12
相关论文
共 50 条
  • [1] Fuzzy stochastic automata for intelligent vehicle control
    Rigatos, GG
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2003, 50 (01) : 76 - 79
  • [2] Optimal control of discrete hybrid stochastic automata
    Bemporad, A
    Di Cairano, S
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2005, 3414 : 151 - 167
  • [3] LEARNING AUTOMATA IN STOCHASTIC PLANT CONTROL PROBLEMS
    LYUBCHIK, LM
    POZNYAK, AS
    AUTOMATION AND REMOTE CONTROL, 1974, 35 (05) : 777 - 789
  • [4] (Hybrid) automata and (stochastic) programsThe hybrid automata lattice of a stochastic program
    Bortolussi, Luca
    Policriti, Alberto
    JOURNAL OF LOGIC AND COMPUTATION, 2013, 23 (04) : 761 - 798
  • [5] Fuzzy control of combustion with genetic learning automata
    Hímer, Z
    Dévényi, G
    Kovács, J
    Kortela, U
    SIMULATION IN INDUSTRY, 2004, : 69 - 74
  • [6] Application of stochastic learning automata to intelligent vehicle control
    Stoica, Florin
    Popa, Emil M.
    PROCEEDING OF THE 11TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTERS: COMPUTER SCIENCE AND TECHNOLOGY, VOL 4, 2007, : 240 - +
  • [7] Model-Predictive Control of Discrete Hybrid Stochastic Automata
    Bemporad, Alberto
    Di Cairano, Stefano
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (06) : 1307 - 1321
  • [8] Stochastic learning feedback hybrid automata for power management in embedded systems
    Kachroo, P
    Shukla, SK
    Erbes, T
    Patel, H
    SMCIA/03: PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL WORKSHOP ON SOFT COMPUTING IN INDUSTRIAL APPLICATIONS, 2003, : 121 - 125
  • [9] Neural Hybrid Automata: Learning Dynamics with Multiple Modes and Stochastic Transitions
    Poli, Michael
    Massaroli, Stefano
    Scimeca, Luca
    Oh, Seong Joon
    Chun, Sanghyuk
    Yamashita, Atsushi
    Asama, Hajime
    Park, Jinkyoo
    Garg, Animesh
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [10] Multi-objective reactive power optimization by fuzzy cluster and learning automata
    Wang, Yurong
    Wan, Qiulan
    Chen, Hao
    Dianwang Jishu/Power System Technology, 2012, 36 (07): : 224 - 230