All-Transition Metal Aromaticity and Antiaromaticity

被引:36
|
作者
Sergeeva, Alina P. [1 ]
Averkiev, Boris B. [1 ]
Boldyrev, Alexander I. [1 ]
机构
[1] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA
来源
METAL-METAL BONDING | 2010年 / 136卷
基金
美国国家科学基金会;
关键词
Adaptive natural density partitioning; All transition metal aromaticity; Chemical bonding; Cluster; Multifold aromaticity; D-ORBITAL AROMATICITY; ALKALI-METAL; CLUSTERS; METALLABENZENES; DERIVATIVES; REACTIVITY; BE-3(2-); ANALOGS; RINGS; SIGMA;
D O I
10.1007/978-3-642-05243-9_8
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Though aromaticity in compounds containing a transition-metal atom has already been discussed for quite a long time, aromaticity in all-transition metal systems have been recognized only recently. There are examples of sigma-, pi-, and delta-aromaticity based on s-, p-, and d-AO0s. We derived the counting rules for sigma-, pi-, delta-, and phi-aromaticity/antiaromaticity for both singlet/triplet coupled model triatomic and tetratomic systems so that one could use those to rationalize aromaticity and antiaromaticity in all-transition metal systems. These rules can be easily extended for any cyclic systems composed out of odd or even number of atoms. We elucidated the application of these rules to the all-transition metal cyclic systems: Au-3(+)/Au-3(-), Na2Zn3, Hg-4(6-), Mo3O92- Sc-3(-), Hf-3, and Ta-3(-) clusters. We believe that the use of concepts of aromaticity, antiaromaticity and conflicting aromaticity can be an important theoretical tool for deciphering chemical bonding in various known and novel chemical compounds containing transition metal atoms.
引用
收藏
页码:275 / 305
页数:31
相关论文
共 50 条
  • [1] All-metal aromaticity and antiaromaticity
    Boldyrev, AI
    Wang, LS
    CHEMICAL REVIEWS, 2005, 105 (10) : 3716 - 3757
  • [2] Aromaticity and antiaromaticity in transition-metal systems
    Zubarev, Dmitry Yu.
    Averkiev, Boris B.
    Zhai, Hua-Jin
    Wang, Lai-Sheng
    Boldyrev, Alexander I.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (02) : 257 - 267
  • [3] Aromaticity and antiaromaticity in metal systems.
    Boldyrev, AI
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U723 - U723
  • [4] PHYS 519-Multiple aromaticity, conflicting aromaticity, and multiple antiaromaticity in transition-metal systems
    Averkiev, Boris B.
    Zubarev, Dmitry Yu.
    Zhai, Hua Jin
    Wang, Lai-Sheng
    Boldyrev, Alexander I.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 236
  • [5] Antiaromaticity-aromaticity transition of cyclo[16]carbon upon metal encapsulation†
    Jiang, Yuhang
    Wu, Yabei
    Deng, Jianjun
    Wang, Zhiyong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (14) : 8817 - 8824
  • [6] Aromaticity and antiaromaticity in clusters
    Boldyrev, AI
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U2870 - U2870
  • [7] The aromaticity and antiaromaticity of dehydroannulenes
    Jusélus, J
    Sundholm, D
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (12) : 2433 - 2437
  • [8] σ-aromaticity and σ-antiaromaticity in alkali metal and alkaline earth metal small clusters
    Alexandrova, AN
    Boldyrev, AI
    JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (04): : 554 - 560
  • [9] Aromaticity/Antiaromaticity Effect on Activity of Transition Metal Macrocyclic Complexes towards Electrocatalytic Oxygen Reduction
    Ni, Youxuan
    Lu, Yong
    Zhang, Kai
    Chen, Jun
    CHEMSUSCHEM, 2021, 14 (08) : 1835 - 1839
  • [10] Aromaticity and Antiaromaticity in Zintl Clusters
    Liu, Chao
    Popov, Ivan A.
    Chen, Zhongfang
    Boldyrev, Alexander I.
    Sun, Zhong-Ming
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (55) : 14583 - 14597