In situ synchrotron diffraction and modeling of non-equilibrium solidification of a MnFeCoNiCu alloy

被引:12
|
作者
Schneiderman, Benjamin [1 ]
Chuang, Andrew Chihpin [2 ]
Kenesei, Peter [2 ]
Yu, Zhenzhen [1 ]
机构
[1] Colorado Sch Mines, Golden, CO 80401 USA
[2] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
基金
美国国家科学基金会;
关键词
HIGH-ENTROPY-ALLOY; LIQUID-PHASE SEPARATION; MECHANICAL-PROPERTIES; MICROSTRUCTURE; BEHAVIOR; DECOMPOSITION; STABILITY;
D O I
10.1038/s41598-021-85430-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The solidification mechanism and segregation behavior of laser-melted Mn35Fe5Co20Ni20Cu20 was firstly investigated via in situ synchrotron x-ray diffraction at millisecond temporal resolution. The transient composition evolution of the random solid solution during sequential solidification of dendritic and interdendritic regions complicates the analysis of synchrotron diffraction data via any single conventional tool, such as Rietveld refinement. Therefore, a novel approach combining a hard-sphere approximation model, thermodynamic simulation, thermal expansion measurement and microstructural characterization was developed to assist in a fundamental understanding of the evolution of local composition, lattice parameter, and dendrite volume fraction corresponding to the diffraction data. This methodology yields self-consistent results across different methods. Via this approach, four distinct stages were identified, including: (I) FCC dendrite solidification, (II) solidification of FCC interdendritic region, (III) solid-state interdiffusion and (IV) final cooling with marginal diffusion. It was found out that in Stage I, Cu and Mn were rejected into liquid as Mn35Fe5Co20Ni20Cu20 solidified dendritically. During Stage II, the lattice parameter disparity between dendrite and interdendritic region escalated as Cu and Mn continued segregating into the interdendritic region. After complete solidification, during Stage III, the lattice parameter disparity gradually decreases, demonstrating a degree of composition homogenization. The volume fraction of dendrites slightly grew from 58.3 to 65.5%, based on the evolving composition profile across a dendrite/interdendritic interface in diffusion calculations. Postmortem metallography further confirmed that dendrites have a volume fraction of 64.7%+/- 5.3% in the final microstructure.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] In situ synchrotron diffraction and modeling of non-equilibrium solidification of a MnFeCoNiCu alloy
    Benjamin Schneiderman
    Andrew Chihpin Chuang
    Peter Kenesei
    Zhenzhen Yu
    [J]. Scientific Reports, 11
  • [2] Non-equilibrium segregation during alloy solidification
    Glicksman, ME
    Hills, RN
    [J]. PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 2001, 81 (01): : 153 - 159
  • [3] Thermodynamic modeling of porosity formation during non-equilibrium solidification in magnesium alloy castings
    Li, J. M.
    Wood, J. T.
    Auld, J.
    Wang, G.
    [J]. MAGNESIUM TECHNOLOGY 2008, 2008, : 105 - +
  • [4] Non-equilibrium solidification of high alloy ledeburitic type steel
    Doubkova, K
    Vojtech, D
    Jurci, P
    [J]. KOVOVE MATERIALY-METALLIC MATERIALS, 1998, 36 (04): : 257 - 269
  • [5] A numerical model for a hypoeutectic alloy droplet deposition with non-equilibrium solidification
    Vimal Ramanuj
    Albert Y. Tong
    [J]. Journal of Materials Science, 2017, 52 : 6034 - 6049
  • [6] A numerical model for a hypoeutectic alloy droplet deposition with non-equilibrium solidification
    Ramanuj, Vimal
    Tong, Albert Y.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2017, 52 (10) : 6034 - 6049
  • [7] In situ study of non-equilibrium solidification of CoCrFeNi high-entropy alloy and CrFeNi and CoCrNi ternary suballoys
    Andreoli, Angelo F.
    Shuleshova, Olga
    Witusiewicz, Victor T.
    Wu, Yuhao
    Yang, Yanzhao
    Ivashko, Oleh
    Dippel, Ann-Christin
    Zimmermann, Martin, V
    Nielsch, Kornelius
    Kaban, Ivan
    [J]. ACTA MATERIALIA, 2021, 212
  • [8] MICROSCOPIC KINETICS OF NON-EQUILIBRIUM SOLIDIFICATION
    CAl Yingwen
    [J]. Acta Metallurgica Sinica(English Letters), 1994, (02) : 84 - 88
  • [9] NON-EQUILIBRIUM SOLIDIFICATION IN A PERITECTIC SYSTEM
    TIWARI, SN
    MALHOTRA, SL
    ANANTHAR.TR
    [J]. CURRENT SCIENCE, 1970, 39 (21): : 477 - &
  • [10] Non-Equilibrium Solidification, Modeling for Microstructure Engineering of Industrial Alloys (NEQUISOL)
    Herlach, Dieter M.
    Lengsdorf, Roman
    Reutzel, Sven
    Galenko, Peter
    Hartmann, Helena
    Gandin, Charles-Andre
    Mosbah, Salem
    Garcia-Escorial, Asuncion
    Henein, Hani
    [J]. INTERNATIONAL JOURNAL OF MICROGRAVITY SCIENCE AND APPLICATION, 2008, 25 (03):