Minimal surfaces of rotation in Finsler space with a Randers metric

被引:36
|
作者
Souza, M [1 ]
Tenenblat, K
机构
[1] Univ Fed Goias, Inst Matemat & Eststist, BR-74001970 Goiania, Go, Brazil
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Minimal Surface; Finsler Space;
D O I
10.1007/s00208-002-0392-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Finsler spaces with a Randers metric F alpha + beta, on the three dimensional real vector space, where alpha is the Euclidean metric and beta = bdx(3) is a 1-form with norm b, 0 less than or equal to b < 1. By using the notion of mean curvature for immersions in Finsler spaces introduced by Z. Shen, we get the ordinary differential equation that characterizes the minimal surfaces of rotation around the x(3) axis. We prove that for every b, 0 less than or equal to b < 1, there exists, up to homothety, a unique forward complete minimal surface of rotation. The surface is embedded, symmetric with respect to a plane perpendicular to the rotation axis and it is generated by a concave plane curve. Moreover, for every b, root3/3 < b < 1 there are non complete minimal surfaces of rotation, which include explicit minimal cones.
引用
收藏
页码:625 / 642
页数:18
相关论文
共 50 条
  • [1] Minimal surfaces of rotation in Finsler space with a Randers metric
    Marcelo Souza
    Keti Tenenblat
    [J]. Mathematische Annalen, 2003, 325 : 625 - 642
  • [2] Helicoidal Minimal Surfaces in a Finsler Space of Randers Type
    da Silva, Rosangela Maria
    Tenenblat, Keti
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (04): : 765 - 779
  • [3] On Randers change of a Finsler space with mth-root metric
    Tiwari, Bankteshwar
    Kumar, Manoj
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (10)
  • [4] On the Reversible Geodesics for a Finsler Space with Randers Change of Quartic Metric
    Shanker, Gauree
    Sharma, Ruchi Kaushik
    [J]. THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 203 - 209
  • [5] Nontrivial minimal surfaces in a hyperbolic Randers space
    Cui, Ningwei
    Shen, Yi-Bing
    [J]. MATHEMATISCHE NACHRICHTEN, 2017, 290 (04) : 570 - 582
  • [6] ON COMPLEX FINSLER SPACES WITH RANDERS METRIC
    Aldea, Nicoleta
    Munteanu, Gheorghe
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 949 - 966
  • [7] ON S-CURVATURE OF A HOMOGENEOUS FINSLER SPACE WITH RANDERS CHANGED SQUARE METRIC
    Rani, Sarita
    Shanker, Gauree
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (03): : 673 - 691
  • [8] MINIMAL SURFACES IN A CYLINDRICAL REGION OF R3 WITH A RANDERS METRIC
    da Silva, Rosangela Maria
    Tenenblat, Keti
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (03): : 745 - 771
  • [9] A class of Finsler metrics projectively related to a Randers metric
    Chen, Guangzu
    Cheng, Xinyue
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (3-4): : 351 - 363
  • [10] Remarks on minimal surfaces in a 3-dimensional Randers space
    Hou Z.-H.
    Liu Y.-N.
    [J]. Journal of Geometry, 2018, 109 (1)