ISOGEOMETRIC BOUNDARY ELEMENTS IN ELECTROMAGNETISM: RIGOROUS ANALYSIS, FAST METHODS, AND EXAMPLES

被引:22
|
作者
Doelz, Juergen [1 ]
Kurz, Stefan [1 ]
Schoeps, Sebastian [1 ]
Wolf, Felix [1 ]
机构
[1] Tech Univ Darmstadt, Ctr Computat Engn, Inst Accelerator Sci & Electromagnet Fields, D-64293 Darmstadt, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2019年 / 41卷 / 05期
基金
瑞士国家科学基金会;
关键词
BEM; FMM; IGA; electromagnetic scattering; EFIE; FIELD INTEGRAL-EQUATION; FAST MULTIPOLE METHOD; FINITE-ELEMENTS; APPROXIMATION; BEM; CONVERGENCE; QUADRATURE; LAPLACE;
D O I
10.1137/18M1227251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a new approach to three-dimensional electromagnetic scattering problems via fast isogeometric boundary element methods. Starting with an investigation of the theoretical setting around the electric field integral equation within the isogeometric framework, we show existence, uniqueness, and quasi optimality of the isogeometric approach. For a fast and efficient computation, we then introduce and analyze an interpolation-based fast multipole method tailored to the isogeometric setting, which admits competitive algorithmic and complexity properties. This is followed by a series of numerical examples of industrial scope, together with a detailed presentation and interpretation of the results.
引用
收藏
页码:B983 / B1010
页数:28
相关论文
共 50 条
  • [1] Sensitivity analysis of transverse electric polarized electromagnetic scattering with isogeometric boundary elements accelerated by a fast multipole method
    Chen, Leilei
    Lian, Haojie
    Liu, Chengmiao
    Li, Yongsong
    Natarajan, Sundararajan
    APPLIED MATHEMATICAL MODELLING, 2025, 141
  • [2] Uncertainty analysis in acoustics: perturbation methods and isogeometric boundary element methods
    Chen, Leilei
    Lian, Haojie
    Huo, Ruijin
    Du, Jing
    Liu, Weisong
    Meng, Zhuxuan
    Bordas, Stephane P. A.
    ENGINEERING WITH COMPUTERS, 2024, 40 (06) : 3875 - 3900
  • [3] Circular element: Isogeometric elements of smooth boundary
    Jia Lu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (30-32) : 2391 - 2402
  • [4] Performance analysis of parallel Krylov methods for solving boundary integral equations in electromagnetism
    Carpentieri, B.
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2007, 23 (07): : 691 - 701
  • [5] Isogeometric Finite Elements With Surface Impedance Boundary Conditions
    Vazquez, Rafael
    Buffa, Annalisa
    Di Rienzo, Luca
    Li, Dongwei
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 429 - 432
  • [6] Modeling considerations for rigorous boundary element method analysis of diffractive optical elements
    Bendickson, JM
    Glytsis, EN
    Gaylord, TK
    Peterson, AF
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (07): : 1495 - 1506
  • [7] The Shifted Boundary Method in Isogeometric Analysis
    Antonelli, Nicolo
    Aristio, Ricky
    Gorgi, Andrea
    Zorrilla, Ruben
    Rossi, Riccardo
    Scovazzi, Guglielmo
    Wuechner, Roland
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 430
  • [8] Scaled boundary parametrizations in isogeometric analysis
    Arioli, Clarissa
    Sharnanskiy, Alexander
    Minkel, Sven
    Simeon, Bernd
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 349 : 576 - 594
  • [9] Acoustic isogeometric boundary element analysis
    Simpson, R. N.
    Scott, M. A.
    Taus, M.
    Thomas, D. C.
    Lian, H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 269 : 265 - 290
  • [10] Acceleration of isogeometric boundary element analysis through a black-box fast multipole method
    Simpson, R. N.
    Liu, Z.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2016, 66 : 168 - 182