Using fuzzy clustering to improve naive Bayes classifiers and probabilistic networks

被引:0
|
作者
Borgelt, C [1 ]
Timm, H [1 ]
Kruse, R [1 ]
机构
[1] Univ Magdeburg, Dept Knowledge Proc & Language Engn, D-39106 Magdeburg, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although probabilistic networks and fuzzy clustering may seem to be disparate areas of research, they can both be seen as generalizations of naive Bayes classifiers. If all descriptive attributes are numeric, naive Bayes classifiers often assume an axis-parallel multidimensional normal distribution for each class. Probabilistic networks remove the requirement that the distributions must be axis-parallel by taking covariances into account where this is necessary. Fuzzy clustering tries to And general or axis-parallel distributions to cluster the data. Although it neglects the class information, it can be used to improve the result of the abovementioned methods by removing the restriction to only one distribution per class.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 50 条
  • [1] Probabilistic Fuzzy Naive Bayes
    Moura, Gabriel
    Roisenberg, Mauro
    [J]. 2015 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2015), 2015, : 246 - 251
  • [2] Sarcasm detection in microblogs using Naive Bayes and fuzzy clustering
    Mukherjee, Shubhadeep
    Bala, Pradip Kumar
    [J]. TECHNOLOGY IN SOCIETY, 2017, 48 : 19 - 27
  • [3] Synthesis of Probabilistic Fuzzy Classifiers Using GK Clustering and Bayesian Estimation
    Ledo, L.
    Delgado, M. R.
    de Oliveira, J. V.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2017, 15 (03) : 550 - 556
  • [4] On constructing probabilistic fuzzy classifiers from weighted fuzzy clustering
    Kaymak, U
    van den Berg, J
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 395 - 400
  • [5] Directional naive Bayes classifiers
    Pedro L. López-Cruz
    Concha Bielza
    Pedro Larrañaga
    [J]. Pattern Analysis and Applications, 2015, 18 : 225 - 246
  • [6] Directional naive Bayes classifiers
    Lopez-Cruz, Pedro L.
    Bielza, Concha
    Larranaga, Pedro
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 225 - 246
  • [7] On pairwise naive Bayes classifiers
    Sulzmann, Jan-Nikolas
    Fuernkranz, Johannes
    Huellermeier, Eyke
    [J]. MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 371 - +
  • [8] Landscapes of Naive Bayes classifiers
    Hoare, Zoe
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2008, 11 (01) : 59 - 72
  • [9] Tool wear monitoring using naive Bayes classifiers
    Karandikar, Jaydeep
    McLeay, Tom
    Turner, Sam
    Schmitz, Tony
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 77 (9-12): : 1613 - 1626
  • [10] A decomposition of classes via clustering to explain and improve Naive Bayes
    Vilalta, R
    Rish, I
    [J]. MACHINE LEARNING: ECML 2003, 2003, 2837 : 444 - 455