Twisted Heisenberg chain and the six-vertex model with DWBC

被引:4
|
作者
Galleas, W. [1 ,2 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, NL-3584 CE Utrecht, Netherlands
[2] Univ Utrecht, Spinoza Inst, NL-3584 CE Utrecht, Netherlands
关键词
integrable spin chains (vertex models); quantum integrability (Bethe ansatz); solvable lattice models; FUNCTIONAL RELATIONS; BOUNDARY-CONDITIONS; SOS MODEL; LATTICE; ALGEBRA;
D O I
10.1088/1742-5468/2014/11/P11028
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work we establish a relation between the six-vertex model with Domain Wall Boundary Conditions (DWBC) and the XXZ spin chain with anti-periodic twisted boundaries. More precisely, we demonstrate a formal relation between the zeroes of the partition function of the six-vertex model with DWBC and the zeroes of the transfer matrix eigenvalues associated with the six-vertex model with a particular non-diagonal boundary twist.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Convergence of the Stochastic Six-Vertex Model to the ASEPStochastic Six-Vertex Model and ASEP
    Amol Aggarwal
    Mathematical Physics, Analysis and Geometry, 2017, 20
  • [2] Properties of eigenstates of the six-vertex model with twisted and open boundary conditions
    Fan, H
    Hou, BY
    Shi, KJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (07) : 3446 - 3456
  • [3] On Delocalization in the Six-Vertex Model
    Lis, Marcin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (02) : 1181 - 1205
  • [4] STOCHASTIC SIX-VERTEX MODEL
    Borodin, Alexei
    Corwin, Ivan
    Gorin, Vadim
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (03) : 563 - 624
  • [5] On Delocalization in the Six-Vertex Model
    Marcin Lis
    Communications in Mathematical Physics, 2021, 383 : 1181 - 1205
  • [6] The six-vertex model on random lattices
    Zinn-Justin, P
    EUROPHYSICS LETTERS, 2000, 50 (01): : 15 - 21
  • [7] Six-vertex model with an frustrated impurity
    Hara, Y
    Hatano, N
    Suzuki, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (10) : 3048 - 3052
  • [8] Symmetry relations for the six-vertex model
    Watson, GI
    JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (5-6) : 1045 - 1054
  • [9] Boundary polarization in the six-vertex model
    Bogoliubov, NM
    Kitaev, AV
    Zvonarev, MB
    PHYSICAL REVIEW E, 2002, 65 (02):
  • [10] Complexity classification of the six-vertex model
    Cai, Jin-Yi
    Fu, Zhiguo
    Xia, Mingji
    INFORMATION AND COMPUTATION, 2018, 259 : 130 - 141