An Adjacent Atomic Platinum Site Enables Single-Atom Iron with High Oxygen Reduction Reaction Performance

被引:325
|
作者
Han, Ali [1 ]
Wang, Xijun [2 ]
Tang, Kun [3 ]
Zhang, Zedong [1 ]
Ye, Chenliang [1 ]
Kong, Kejian [1 ]
Hu, Haibo [3 ]
Zheng, Lirong [4 ]
Jiang, Peng [1 ]
Zhao, Changxin [5 ]
Zhang, Qiang [5 ]
Wang, Dingsheng [1 ]
Li, Yadong [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[2] Univ Sci & Technol China, Sch Chem & Mat Sci, CAS Ctr Excellence Nanosci, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Peoples R China
[4] Chinese Acad Sci, Beijing Synchrotron Radiat Facil Inst High Energy, 19 Yuquan Rd, Beijing 100049, Peoples R China
[5] Tsinghua Univ, Beijing Key Lab Green Chem React Engn & Technol, Dept Chem Engn, Beijing 100084, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
dual atomic sites; modulation effect; oxygen reduction reaction; platinum; single-atom catalysts; DOPED CARBON; CATALYSTS; ELECTROCATALYSTS; COBALT; MODEL;
D O I
10.1002/anie.202105186
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The modulation effect has been widely investigated to tune the electronic state of single-atomic M-N-C catalysts to enhance the activity of oxygen reduction reaction (ORR). However, the in-depth study of modulation effect is rarely reported for the isolated dual-atomic metal sites. Now, the catalytic activities of Fe-N-4 moiety can be enhanced by the adjacent Pt-N-4 moiety through the modulation effect, in which the Pt-N-4 acts as the modulator to tune the 3d electronic orbitals of Fe-N-4 active site and optimize ORR activity. Inspired by this principle, we design and synthesize the electrocatalyst that comprises isolated Fe-N-4/Pt-N-4 moieties dispersed in the nitrogen-doped carbon matrix (Fe-N-4/Pt-N-4@NC) and exhibits a half-wave potential of 0.93 V vs. RHE and negligible activity degradation (Delta E-1/2 = 8 mV) after 10000 cycles in 0.1 M KOH. We also demonstrate that the modulation effect is not effective for optimizing the ORR performances of Co-N-4/Pt-N-4 and Mn-N-4/Pt-N-4 systems.
引用
收藏
页码:19262 / 19271
页数:10
相关论文
共 50 条
  • [1] High performance platinum single atom electrocatalyst for oxygen reduction reaction
    Liu, Jing
    Jiao, Menggai
    Lu, Lanlu
    Barkholtz, Heather M.
    Li, Yuping
    Wang, Ying
    Jiang, Luhua
    Wu, Zhijian
    Liu, Di-Jia
    Zhuang, Lin
    Ma, Chao
    Zeng, Jie
    Zhang, Bingsen
    Su, Dangsheng
    Song, Ping
    Xing, Wei
    Xu, Weilin
    Wang, Ying
    Jiang, Zheng
    Sun, Gongquan
    NATURE COMMUNICATIONS, 2017, 8
  • [2] High performance platinum single atom electrocatalyst for oxygen reduction reaction
    Jing Liu
    Menggai Jiao
    Lanlu Lu
    Heather M. Barkholtz
    Yuping Li
    Ying Wang
    Luhua Jiang
    Zhijian Wu
    Di-jia Liu
    Lin Zhuang
    Chao Ma
    Jie Zeng
    Bingsen Zhang
    Dangsheng Su
    Ping Song
    Wei Xing
    Weilin Xu
    Ying Wang
    Zheng Jiang
    Gongquan Sun
    Nature Communications, 8
  • [3] Erratum: High performance platinum single atom electrocatalyst for oxygen reduction reaction
    Jing Liu
    Menggai Jiao
    Lanlu Lu
    Heather M. Barkholtz
    Yuping Li
    Ying Wang
    Luhua Jiang
    Zhijian Wu
    Di-jia Liu
    Lin Zhuang
    Chao Ma
    Jie Zeng
    Bingsen Zhang
    Dangsheng Su
    Ping Song
    Wei Xing
    Weilin Xu
    Ying Wang
    Zheng Jiang
    Gongquan Sun
    Nature Communications, 8
  • [4] Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction
    Yang, Liu
    Cheng, Daojian
    Xu, Haoxiang
    Zeng, Xiaofei
    Wan, Xin
    Shui, Jianglan
    Xiang, Zhonghua
    Cao, Dapeng
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (26) : 6626 - 6631
  • [5] Single-Atom Iron Catalysts on Overhang-Eave Carbon Cages for High-Performance Oxygen Reduction Reaction
    Hou, Chun-Chao
    Zou, Lianli
    Sun, Liming
    Zhang, Kexin
    Liu, Zheng
    Li, Yinwei
    Li, Caixia
    Zou, Ruqiang
    Yu, Jihong
    Xu, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (19) : 7384 - 7389
  • [6] Single-Atom Iron Catalysts on Overhang-Eave Carbon Cages for High-Performance Oxygen Reduction Reaction
    Hou, Chun-Chao
    Zou, Lianli
    Sun, Liming
    Zhang, Kexin
    Liu, Zheng
    Li, Yinwei
    Li, Caixia
    Zou, Ruqiang
    Yu, Jihong
    Xu, Qiang
    Advanced Materials, 2020, 132 (19) : 7454 - 7459
  • [7] Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction
    Chen, Guangbo
    Zhong, Haixia
    Feng, Xinliang
    CHEMICAL SCIENCE, 2021, 12 (48) : 15802 - 15820
  • [8] Synergistic Hybrid Electrocatalysts of Platinum Alloy and Single-Atom Platinum for an Efficient and Durable Oxygen Reduction Reaction
    Liu, Bowen
    Feng, Ruohan
    Busch, Michael
    Wang, Sihong
    Wu, Haofei
    Liu, Pan
    Gu, Jiajun
    Bahadoran, Ashkan
    Matsumura, Daiju
    Tsuji, Takuya
    Zhang, Di
    Song, Fang
    Liu, Qinglei
    ACS NANO, 2022, 16 (09) : 14121 - 14133
  • [9] Engineering the coordination environment enables molybdenum single-atom catalyst for efficient oxygen reduction reaction
    Wang, Changlai
    Wang, Dongdong
    Liu, Shuai
    Jiang, Peng
    Lin, Zhiyu
    Xu, Pengping
    Yang, Kang
    Lu, Jian
    Tong, Huigang
    Hu, Lin
    Zhang, Wenjun
    Chen, Qianwang
    JOURNAL OF CATALYSIS, 2020, 389 : 150 - 156
  • [10] Single-Atom Alloys for the Electrochemical Oxygen Reduction Reaction
    Darby, Matthew T.
    Stamatakis, Michail
    CHEMPHYSCHEM, 2021, 22 (05) : 499 - 508