The monomial conjecture and order ideals II

被引:1
|
作者
Dutta, S. P. [1 ]
机构
[1] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
关键词
Commutative algebra; Monomial conjecture; Order ideal conjecture; Regular local ring; Edge homomorphism in a spectral sequence; Syzygies; Finite projective dimension; CANONICAL ELEMENT CONJECTURE; DIRECT SUMMAND CONJECTURE; SYZYGY PROBLEM; EXTENSIONS; MODULES; RINGS;
D O I
10.1016/j.jalgebra.2015.12.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I be an ideal of height d in a regular local ring (R,m, k = R/m) of dimension n and let Omega denote the canonical module of R/I. In this paper we first prove the equivalence of the following: the non-vanishing of the edge homomorhpism eta(d) : Ext(R)(n-d) (k, Omega) -> Ext(R)(n) (k,R), the validity of the order ideal conjecture for regular local rings, and the validity of the monomial conjecture for all local rings. Next we prove several special cases of the order ideal conjecture/monomial conjecture. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:123 / 138
页数:16
相关论文
共 50 条