Wave function intensity statistics from unstable periodic orbits

被引:53
|
作者
Kaplan, L [1 ]
机构
[1] Harvard Univ, Dept Phys & Soc Fellows, Cambridge, MA 02138 USA
关键词
D O I
10.1103/PhysRevLett.80.2582
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine the effect of short unstable periodic orbits on wave function statistics in a classically chaotic system, and find that the tail of the wave function intensity distribution in phase space is dominated by scarring associated with the least unstable periodic orbits. In an ensemble average over systems with classical orbits of different instabilities, a power-law tail is found, in sharp contrast to the exponential prediction of random matrix theory. The calculations are compared with numerical data, and quantitative agreement is obtained.
引用
收藏
页码:2582 / 2585
页数:4
相关论文
共 50 条
  • [1] Chaos, order statistics and unstable periodic orbits
    Valsakumar, MC
    Satyanarayana, SVM
    Kanmani, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (40): : 6939 - 6947
  • [2] Capturing Turbulent Dynamics and Statistics in Experiments with Unstable Periodic Orbits
    Suri, Balachandra
    Kageorge, Logan
    Grigoriev, Roman O.
    Schatz, Michael F.
    PHYSICAL REVIEW LETTERS, 2020, 125 (06)
  • [3] Lyapunov exponents from unstable periodic orbits
    Franzosi, R
    Poggi, P
    Cerruti-Sola, M
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [4] ISOLATED UNSTABLE PERIODIC ORBITS
    CHURCHIL.RC
    PECELLI, G
    ROD, DL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A134 - A134
  • [5] ISOLATED UNSTABLE PERIODIC ORBITS
    CHURCHILL, RC
    PECELLI, G
    ROD, DL
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1975, 17 (02) : 329 - 348
  • [6] Extracting dynamical structure from unstable periodic orbits
    Dolan, KT
    PHYSICAL REVIEW E, 2001, 64 (02) : 9 - 262139
  • [7] Spectral statistics and periodic orbits
    Bogomolny, EB
    NEW DIRECTIONS IN QUANTUM CHAOS, 2000, 143 : 333 - 369
  • [8] Statistics of unstable periodic orbits of a chaotic dynamical system with a large number of degrees of freedom
    Kawasaki, M
    Sasa, S
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [9] POINCARE CLASSIFICATION OF UNSTABLE PERIODIC ORBITS
    VIEIRAMARTINS, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (21): : 1023 - 1025
  • [10] Unstable periodic orbits in the Lorenz attractor
    Boghosian, Bruce M.
    Brown, Aaron
    Laett, Jonas
    Tang, Hui
    Fazendeiro, Luis M.
    Coveney, Peter V.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1944): : 2345 - 2353