Parallel and poloidal fluxes in turbulent non-ohmic plasmas: An ion-cyclotron resonance heating case

被引:1
|
作者
Pometescu, N [1 ]
Weyssow, B
机构
[1] Univ Craiova, Fac Phys, Assoc EURATOM NASTI, Craiova, Romania
[2] Free Univ Brussels, Assoc EURATOM Etat Belge, B-1050 Brussels, Belgium
关键词
D O I
10.1063/1.1557914
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The parallel component of the vectorial fluxes, in particular the ion parallel particle flux h(parallel to)(i(1)) and the ion parallel heat flux h(parallel to)(i(3)), in an electrostatic turbulent magnetically confined plasma submitted to an external rf heating are obtained analytically in terms of the thermodynamic forces. Their expressions are derived using the methodology of neoclassical transport theory, the standard model of magnetic field and assuming a non-ohmic heating in the ion cyclotron resonance heating range for which a decoupling of the electron to the ion dynamics may be admitted as a first approximation. It is shown that all but one of the ion parallel turbulent transport coefficients related to a spectrum of electrostatic fluctuations are drastically reduced when the rf power density measured in terms of the Stix parameter is increased. The remaining coefficient, absent for an ohmic plasma increases with the Stix parameter. (C) 2003 American Institute of Physics.
引用
收藏
页码:1048 / 1059
页数:12
相关论文
共 50 条
  • [1] Radial and poloidal particle and energy fluxes in a turbulent non-Ohmic plasma: An ion-cyclotron resonance heating case
    Pometescu, N.
    Weyssow, B.
    PHYSICS OF PLASMAS, 2007, 14 (02)
  • [2] VARIATIONAL THEORY OF ION-CYCLOTRON RESONANCE HEATING IN TOKAMAK PLASMAS
    GAMBIER, DJ
    SAMAIN, A
    NUCLEAR FUSION, 1985, 25 (03) : 283 - 297
  • [3] ION-CYCLOTRON RESONANCE HEATING OF PLASMAS AND ASSOCIATED LONGITUDINAL COOLING
    BUSNARDONETO, J
    DAWSON, J
    KAMIMURA, T
    LIN, AT
    PHYSICAL REVIEW LETTERS, 1976, 36 (01) : 28 - 31
  • [4] ION-CYCLOTRON RESONANCE HEATING ON TEXTOR
    MESSIAEN, AM
    BHATNAGAR, VP
    DELVIGNE, T
    DESCAMPS, P
    DURODIE, F
    JADOUL, M
    KOCH, R
    LEBEAU, D
    PEARSON, DIC
    VANDENPLAS, PE
    VANDERSTRAETEN, A
    VANNIEUWENHOVE, R
    VANOOST, G
    VANWASSENHOVE, G
    WEYNANTS, RR
    BAY, HL
    BERTSCHINGER, G
    BIEGER, W
    BOGEN, P
    CAMPBELL, GA
    CONN, RW
    DIPPEL, KH
    ESSER, HG
    FINKEN, KH
    FUCHS, G
    GIESEN, B
    GOEBEL, DM
    GRAFFMANN, R
    GUTHRIE, SE
    HARTWIG, H
    HINTZ, E
    HREHUSS, G
    HOENEN, F
    HOETHKER, K
    KALECK, A
    KONEN, L
    KORTEN, M
    LIE, YT
    LIUNG, K
    LOCHTER, M
    PONTAU, AE
    POSPIESZCZYK, A
    RUSBULDT, D
    SAMM, U
    SCHWEER, B
    SCHLUTER, J
    SOLTWISCH, H
    THOMAS, G
    WAELBROECK, F
    WAIDMANN, G
    PLASMA PHYSICS AND CONTROLLED FUSION, 1986, 28 (1A) : 71 - 83
  • [5] NON-LINEAR EFFECTS OF ION-CYCLOTRON HEATING OF BOUNDED PLASMAS
    MARTINEZ, R
    KINDEL, J
    LIN, T
    DAWSON, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 969 - 969
  • [6] NON-LINEAR EFFECTS OF ION-CYCLOTRON HEATING OF BOUNDED PLASMAS
    KINDEL, JM
    LIN, AT
    DAWSON, JM
    MARTINEZ, RM
    PHYSICS OF FLUIDS, 1981, 24 (03) : 498 - 503
  • [7] TRAPPED ION ABSORPTION OF NON-MAXWELLIAN PLASMAS IN ION-CYCLOTRON RADIOFREQUENCY HEATING
    CHEN, YP
    TSAI, ST
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (08): : 2739 - 2743
  • [8] TECHNOLOGICAL ISSUES OF ION-CYCLOTRON HEATING OF FUSION PLASMAS
    HWANG, DQ
    FORTGANG, CM
    FUSION TECHNOLOGY, 1985, 8 (01): : 759 - 766
  • [9] Poloidal asymmetries due to ion cyclotron resonance heating
    Kazakov, Ye O.
    Pusztai, I.
    Fulop, T.
    Johnson, T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (10)
  • [10] ION-CYCLOTRON RESONANCE HEATING IN A TANDEM MIRROR
    HOWARD, JE
    KESNER, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 930 - 930