Travelling waves for KdV and Boussinesq's system revisited

被引:0
|
作者
Frank, LS [1 ]
机构
[1] VFR Sci Exactes & Nat, Dept Math, Reims 02, France
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A simple method is presented for explicitly finding the solitons' wavetrain eta for the Korteweg-de Vries equation in terms of the wave numbers of the solitons, their number N being fully determined by the initial disturbance eta(0) is an element of L-1/2(R) The Boussinesq system is asymptotically examined and explicit formulae are given for the slightly deformed corresponding oscillating waves, the small parameter being epsilon = h(0), where ho is the dimensionless depth of the water layer at rest. The existence of such oscillatory waves is rigorously proved for the Boussinesq system. A different Boussinesq system, yielding solitons, is also revisited.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Travelling waves in the Boussinesq type systems
    Dinvay, Evgueni
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 163 : 1 - 10
  • [2] BOUSSINESQ/BOUSSINESQ SYSTEMS FOR INTERNAL WAVES WITH A FREE SURFACE, AND THE KDV APPROXIMATION
    Duchene, Vincent
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (01): : 145 - 185
  • [3] Stabilization of a Boussinesq system of KdV-KdV type
    Pazoto, Ademir F.
    Rosier, Lionel
    SYSTEMS & CONTROL LETTERS, 2008, 57 (08) : 595 - 601
  • [4] The Boussinesq system revisited
    Molinet, Luc
    Talhouk, Raafat
    Zaiter, Ibtissam
    NONLINEARITY, 2021, 34 (02) : 744 - 775
  • [5] Asymptotic behavior of Boussinesq system of KdV-KdV type
    Capistrano-Filho, Roberto A.
    Gallego, Fernando A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (06) : 2341 - 2374
  • [6] Instability of travelling waves for weakly coupled KdV systems
    Angulo, Jaime
    Lopes, Orlando
    Neves, Aloisio
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (5-6) : 1870 - 1887
  • [7] Travelling Waves for Some Generalized Boussinesq Type Equations
    Popivanov, Petar
    INTERNATIONAL WORKSHOP ON COMPLEX STRUCTURES, INTEGRABILITY AND VECTOR FIELDS, 2011, 1340 : 126 - 133
  • [8] Classification of the travelling waves in the nonlinear dispersive KdV equation
    Yin, Jiuli
    Tian, Lixin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) : 465 - 470
  • [9] Travelling waves in shallow water revisited
    Frank, L.S
    Asymptotic Analysis, 1993, 7 (04) : 233 - 238
  • [10] INSTABILITY OF PERIODIC TRAVELLING WAVES WITH MEAN ZERO FOR A 1D BOUSSINESQ SYSTEM
    Quintero, Jose R.
    Munoz, Juan C.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (04) : 1173 - 1205