Polynomial decay of the gap length for Ck quasi-periodic Schrodinger operators and spectral application
被引:8
|
作者:
Cai, Ao
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R China
Univ Lisbon, Fac Ciencias, Dept Matemat, Lisbon, Portugal
Univ Lisbon, Fac Ciencias, CMAFCIO, Lisbon, PortugalNankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
Cai, Ao
[1
,2
,3
,4
]
Wang, Xueyin
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
Wang, Xueyin
[1
,2
]
机构:
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Univ Lisbon, Fac Ciencias, Dept Matemat, Lisbon, Portugal
[4] Univ Lisbon, Fac Ciencias, CMAFCIO, Lisbon, Portugal
Schrodinger operators;
Spectral theory;
Linear cocycles;
KAM theory;
SHARP HOLDER CONTINUITY;
ROTATION NUMBER;
CANTOR SPECTRUM;
INTEGRATED DENSITY;
REDUCIBILITY;
D O I:
10.1016/j.jfa.2021.109035
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
For the quasi-periodic Schrodinger operators in the local perturbative regime where the frequency is Diophantine and the potential is C-k sufficiently small depending on the Diophantine constants, we prove that the length of the corresponding spectral gap has a polynomial decay upper bound with respect to its label. This is based on a refined quantitative reducibility theorem for C-k quasi-periodic SL(2, R) cocycles, and also based on the Moser-Poschel argument for the related Schrodinger cocycles. As an application, we are able to show the homogeneity of the spectrum. (C) 2021 Elsevier Inc. All rights reserved.
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
Texas A&M Univ, Dept Math, College Stn, TX 77843 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Liu, Wencai
Shi, Yunfeng
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA