Initialization method for grammar-guided genetic programming

被引:16
|
作者
Garcia-Arnau, M. [1 ]
Manrique, D. [1 ]
Rios, J. [1 ]
Rodriguez-Paton, A. [1 ]
机构
[1] Univ Politecn Madrid, Dept Artificial Intelligence, Madrid, Spain
关键词
grammar-guided genetic programming; initialization method; tree-generation algorithm; breast cancer prognosis;
D O I
10.1016/j.knosys.2006.11.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new tree-generation algorithm for grammar-guided genetic programming that includes a parameter to control the maximum size of the trees to be generated. An important feature of this algorithm is that the initial populations generated are adequately distributed in terms of tree size and distribution within the search space. Consequently, genetic programming systems starting from the initial populations generated by the proposed method have a higher convergence speed. Two different problems have been chosen to carry out the experiments: a laboratory test involving searching for arithmetical equalities and the real-world task of breast cancer prognosis. In both problems, comparisons have been made to another five important initialization methods. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 50 条
  • [1] Grammatically uniform population initialization for grammar-guided genetic programming
    Pablo Ramos Criado
    D. Barrios Rolanía
    Daniel Manrique
    Emilio Serrano
    [J]. Soft Computing, 2020, 24 : 11265 - 11282
  • [2] Grammatically uniform population initialization for grammar-guided genetic programming
    Ramos Criado, Pablo
    Barrios Rolania, D.
    Manrique, Daniel
    Serrano, Emilio
    [J]. SOFT COMPUTING, 2020, 24 (15) : 11265 - 11282
  • [3] Grammar-guided genetic programming and automatically defined functions
    Rodrigues, E
    Pozo, A
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 2507 : 324 - 333
  • [4] On the Generalizability of Programs Synthesized by Grammar-Guided Genetic Programming
    Sobania, Dominik
    [J]. GENETIC PROGRAMMING, EUROGP 2021, 2021, 12691 : 130 - 145
  • [5] Mining exceptional relationships with grammar-guided genetic programming
    Jose Maria Luna
    Mykola Pechenizkiy
    Sebastian Ventura
    [J]. Knowledge and Information Systems, 2016, 47 : 571 - 594
  • [6] Mining exceptional relationships with grammar-guided genetic programming
    Maria Luna, Jose
    Pechenizkiy, Mykola
    Ventura, Sebastian
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2016, 47 (03) : 571 - 594
  • [7] Crossover and mutation operators for grammar-guided genetic programming
    Couchet, Jorge
    Manrique, Daniel
    Rios, Juan
    Rodriguez-Paton, Alfonso
    [J]. SOFT COMPUTING, 2007, 11 (10) : 943 - 955
  • [8] Crossover and mutation operators for grammar-guided genetic programming
    Jorge Couchet
    Daniel Manrique
    Juan Ríos
    Alfonso Rodríguez-Patón
    [J]. Soft Computing, 2007, 11 : 943 - 955
  • [9] Evolving Nonlinear Multigrid Methods With Grammar-Guided Genetic Programming
    Parthasarathy, Dinesh
    Schmitt, Jonas
    Koestler, Harald
    [J]. PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 615 - 618
  • [10] Extending Program Synthesis Grammars for Grammar-Guided Genetic Programming
    Forstenlechner, Stefan
    Fagan, David
    Nicolau, Miguel
    O'Neill, Michael
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XV, PT I, 2018, 11101 : 197 - 208