Average distance in bipartite tournaments

被引:0
|
作者
Dankelmann, P. [1 ]
Volkmann, L.
机构
[1] Univ KwaZulu Natal, Sch Math & Stat Sci, Durban, South Africa
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-5100 Aachen, Germany
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The average distance p(D) of a strong digraph D is the average of the distances between all ordered pairs of distinct vertices of D. Plesnik [3] proved that if D is a strong tournament of order n, then mu(D) <= n+4/6 + 1/n. In this paper we show that, asymptotically, the same inequality holds for strong bipartite tournaments. We also give an improved upper bound on the average distance of a k-connected bipartite tournament.
引用
收藏
页码:295 / 306
页数:12
相关论文
共 50 条
  • [1] On average distance in tournaments and Eulerian digraphs
    Dankelmann, Peter
    DISCRETE APPLIED MATHEMATICS, 2019, 266 : 38 - 47
  • [2] Scheduling Bipartite Tournaments to Minimize Total Travel Distance
    Hoshino, Richard
    Kawarabayashi, Ken-ichi
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2011, 42 : 91 - 124
  • [3] Average distance in k-connected tournaments
    Dankelmann, P
    Volkmann, L
    ARS COMBINATORIA, 2005, 77 : 289 - 294
  • [4] Disjoint cycles in tournaments and bipartite tournaments
    Chen, Bin
    Chang, An
    JOURNAL OF GRAPH THEORY, 2024, 105 (02) : 297 - 314
  • [5] CYCLES IN BIPARTITE TOURNAMENTS
    BEINEKE, LW
    LITTLE, CHC
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1982, 32 (02) : 140 - 145
  • [6] Kings in bipartite tournaments
    Petrovic, V
    DISCRETE MATHEMATICS, 1997, 173 (1-3) : 187 - 196
  • [7] ON ALSPACH PROBLEM FOR BIPARTITE TOURNAMENTS
    WANG, JZ
    CHINESE SCIENCE BULLETIN, 1990, 35 (09): : 784 - 784
  • [8] THE SECOND NEIGHBOURHOOD FOR BIPARTITE TOURNAMENTS
    Li, Ruijuan
    Sheng, Bin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (02) : 555 - 565
  • [9] The niche graphs of bipartite tournaments
    Eoh, Soogang
    Choi, Jihoon
    Kim, Suh-Ryung
    Oh, Miok
    DISCRETE APPLIED MATHEMATICS, 2020, 282 : 86 - 95
  • [10] Long cycles in bipartite tournaments
    Wang, JZ
    DISCRETE MATHEMATICS, 1996, 148 (1-3) : 217 - 225