A q-analogue of Wolstenholme's harmonic series congruence

被引:26
|
作者
Shi, Ling-Ling [1 ]
Pan, Hao
机构
[1] Zhejiang Univ, Coll Math & Phys, Jinhua 321004, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
来源
AMERICAN MATHEMATICAL MONTHLY | 2007年 / 114卷 / 06期
关键词
D O I
10.1080/00029890.2007.11920441
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:529 / 531
页数:3
相关论文
共 50 条
  • [1] A q-analogue of Lehmer's congruence
    Pan, Hao
    ACTA ARITHMETICA, 2007, 128 (04) : 303 - 318
  • [2] A q-analogue of Wilson's congruence
    Pan, Hao
    Sun, Yu-Chen
    ADVANCES IN APPLIED MATHEMATICS, 2021, 130
  • [3] A generalization of Wolstenholme's harmonic series congruence
    Pan, Hao
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2008, 38 (04) : 1263 - 1269
  • [4] A q-ANALOGUE OF A HYPERGEOMETRIC CONGRUENCE
    Gu, Cheng-Yang
    Guo, Victor J. W.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (02) : 294 - 298
  • [5] The Algebra of a q-Analogue of Multiple Harmonic Series
    Takeyama, Yoshihiro
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [6] A Fibonacci Version of Wolstenholme's Harmonic Series Congruence
    He, B.
    Mao, Y. L.
    Togbe, A.
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (01): : 83 - 85
  • [7] A q-analogue of Apagodu-Zeilberger congruence
    Liu, Jichun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (08) : 2175 - 2179
  • [8] q-analogue of a Class of Harmonic Functions
    Mishra, Omendra
    Porwal, Saurabh
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [9] q-analogue of a p-harmonic mapping
    Porwal, Saurabh
    Mishra, Omendra
    Murugusundaramoorthy, G.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2025,
  • [10] On the q-Analogue of Polya's Theorem
    Bostan, Alin
    Yurkevich, Sergey
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):