EXISTENCE OF APPROXIMATE HERMITIAN-EINSTEIN STRUCTURES ON SEMI-STABLE BUNDLES

被引:29
|
作者
Jacob, Adam [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Approximate Hermitian-Einstein structure; Donaldson functional; Harder-Narasimhan filtration; holomorphic vector bundle; semi-stability; Yang-Mills flow; SCALAR CURVATURE; VECTOR-BUNDLES; CONNECTIONS; STABILITY; SURFACES; METRICS; CONVERGENCE; FLOW;
D O I
10.4310/AJM.2014.v18.n5.a5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to investigate canonical metrics on a semi-stable vector bundle E over a compact Kahler manifold X. It is shown that if E is semi-stable, then Donaldson's functional is bounded from below. This implies that E admits an approximate Hermitian-Einstein structure, generalizing a classic result of Kobayashi for projective manifolds to the Kahler case. As an application some basic properties of semi-stable vector bundles over compact Kahler manifolds are established, such as the fact that semi-stability is preserved under certain exterior and symmetric products.
引用
收藏
页码:859 / 883
页数:25
相关论文
共 50 条
  • [1] Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles
    Li, Jiayu
    Zhang, Xi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (3-4) : 783 - 795
  • [2] Existence of approximate Hermitian–Einstein structures on semi-stable Higgs bundles
    Jiayu Li
    Xi Zhang
    Calculus of Variations and Partial Differential Equations, 2015, 52 : 783 - 795
  • [3] Existence of approximate Hermitian-Einstein structures on semistable principal bundles
    Biswas, Indranil
    Jacob, Adam
    Stemmler, Matthias
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (07): : 745 - 751
  • [4] Hermitian-einstein metrics on parabolic stable bundles
    Jiayu Li
    M. S. Narasimhan
    Acta Mathematica Sinica, 1999, 15 : 93 - 114
  • [5] Hermitian-Einstein Metrics on Parabolic Stable Bundles
    M.S.Narasimhan
    Acta Mathematica Sinica(English Series), 1999, 15 (01) : 93 - 114
  • [6] Hermitian-Einstein metrics on parabolic stable bundles
    Li, JY
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1999, 15 (01): : 93 - 114
  • [7] A Note on Hermitian-Einstein Metrics on Parabolic Stable Bundles
    Jia Yu LI
    M. S. NARASIMHAN
    Acta Mathematica Sinica(English Series), 2001, 17 (01) : 77 - 80
  • [8] A note on Hermitian-Einstein metrics on parabolic stable bundles
    Li, JY
    Narasimhan, MS
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (01): : 77 - 80
  • [9] A Note on Hermitian-Einstein Metrics on Parabolic Stable Bundles
    Li J.Y.
    Narasimhan M.S.
    Acta Mathematica Sinica, 2001, 17 (1) : 77 - 80
  • [10] Existence of Hermitian-Einstein metrics on stable Higgs bundles over open Kahler manifolds
    Li, JY
    Wang, YD
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (08) : 1037 - 1052