Process planning for die and mold machining based on pattern recognition and deep learning

被引:8
|
作者
Hashimoto, Mayu [1 ]
Nakamoto, Keiichi [1 ]
机构
[1] Tokyo Univ Agr & Technol, Dept Mech Syst Engn, 2-24-16 Naka Cho, Koganei, Tokyo 1848588, Japan
关键词
Process planning; Deep learning; Pattern recognition; Die and mold; Machining process information;
D O I
10.1299/jamdsm.2021jamdsm0015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dies and molds are necessary elements in the manufacturing of current industrial products. There is increasing pressure to machine high quality complicated surfaces at low cost. The standardization of process planning is said to be a key to improving the efficiency of machining operations in practice. Thus, computer aided process planning (CAPP) systems are urgently needed to reduce the time and effort of preparing machining operations. However, it is difficult to generalize process planning that continues to depend on skillful experts and requires long preparation time for die and mold machining. On the other hand, to overcome issues that are difficult to generalize, it is well known that machine learning has the capability to estimate valid values according to past case data. Therefore, this study aims to develop a CAPP system that can determine machining process information for complicated surfaces of die and mold based on pattern recognition and deep learning, a kind of machine learning. A network architecture called 3D u-net is adapted to effectively analyze whole images by producing segmented regions. Using a voxel model representing targeted shape, it becomes easier to deal with the complicated surfaces of die and mold generally and three-dimensionally, as skilled experts pay attention to whole geometrical features. Cutting tool type and tool path pattern are treated as machining process information determined in a CAPP system. The results of case studies confirm that the developed CAPP system is effective in determining the machining process information even for complicated surfaces according to the implicit machining know-how.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Effective machining process planning method based on knowledge graph and deep learning
    Li, Jianxun
    Qu, Yaning
    Qiu, Huihui
    Liu, Bin
    Li, Longchuan
    Zhang, Jinlong
    Wei, Liang
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (11): : 3850 - 3865
  • [2] A novel method based on deep reinforcement learning for machining process route planning
    Zhang, Hang
    Wang, Wenhu
    Zhang, Shusheng
    Zhang, Yajun
    Zhou, Jingtao
    Wang, Zhen
    Huang, Bo
    Huang, Rui
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2024, 86
  • [3] A deep autoencoder feature learning method for process pattern recognition
    Yu, Jianbo
    Zheng, Xiaoyun
    Wang, Shijin
    JOURNAL OF PROCESS CONTROL, 2019, 79 : 1 - 15
  • [4] Part machining feature recognition based on a deep learning method
    Ning, Fangwei
    Shi, Yan
    Cai, Maolin
    Xu, Weiqing
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (02) : 809 - 821
  • [5] Part machining feature recognition based on a deep learning method
    Fangwei Ning
    Yan Shi
    Maolin Cai
    Weiqing Xu
    Journal of Intelligent Manufacturing, 2023, 34 : 809 - 821
  • [6] Deep Learning for Pattern Learning and Recognition
    Chen, C. L. Philip
    2015 IEEE 10TH JUBILEE INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2015, : 17 - 17
  • [7] Quantum Based Deep Learning Models for Pattern Recognition
    Shrivastava, Prakhar
    Soni, Kapil Kumar
    Rasool, Akhtar
    INFORMATION, COMMUNICATION AND COMPUTING TECHNOLOGY (ICICCT 2021), 2021, 1417 : 168 - 183
  • [8] Deep Learning for Pattern Recognition
    Zhang, Zhaoxiang
    Shan, Shiguang
    Fang, Yi
    Shao, Ling
    PATTERN RECOGNITION LETTERS, 2019, 119 : 1 - 2
  • [9] City Architectural Color Recognition Based on Deep Learning and Pattern Recognition
    Zhuang, Yi
    Guo, Chenyi
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [10] Study on computer-aided process planning of mold part madbining - An algorithm for determining the optimal cutting direction for deep mold machining
    Morimoto, Kuninori
    Lnui, Masatomo
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2007, 73 (02): : 286 - 290