Product of primes;
Bernoulli polynomials;
Denominator;
Sum of base-p digits;
p-Adic valuation of polynomials;
D O I:
10.1016/j.jnt.2017.03.020
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the properties of the product, which runs over the primes, P-n = Pi(sp(n)>= p) p (n >= 1), sp 01) > P where s(p)(n) denotes the sum of the base-p digits of n. One important property is the fact that p(n) equals the denominator of the Bernoulli polynomial B-n(x) - B-n, where we provide a short p-adic proof. Moreover, we consider the decomposition P-n = P-n(-) . P-n(+), where p(n)(+) contains only those primes p > root n. Let omega(.) denote the number of prime divisors. We show that omega(p(n)(+)) < root n, while we raise the explicit conjecture that omega(P-n(+)) similar to kappa (log n)/(root n) as n -> infinity with a certain constant kappa > 1, supported by several computations. (C) 2017 Elsevier Inc. All rights reserved.
机构:
Aix Marseille Univ, CNRS, Inst Math Marseille, Site Sud,UMR 7373, Campus Luminy,Case 907, Marseille 13288 9, FranceAix Marseille Univ, CNRS, Inst Math Marseille, Site Sud,UMR 7373, Campus Luminy,Case 907, Marseille 13288 9, France
Ramare, Olivier
Srivastav, Priyamvad
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Sci, Chennai 600113, Tamil Nadu, India
Homi Bhabha Natl Inst, Training Sch Complex, Mumbai 400094, Maharashtra, IndiaAix Marseille Univ, CNRS, Inst Math Marseille, Site Sud,UMR 7373, Campus Luminy,Case 907, Marseille 13288 9, France
Srivastav, Priyamvad
Serra, Oriol
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Cataluna, C Pau Gargallo 14, Barcelona 08028, SpainAix Marseille Univ, CNRS, Inst Math Marseille, Site Sud,UMR 7373, Campus Luminy,Case 907, Marseille 13288 9, France