On a product of certain primes

被引:5
|
作者
Kellner, Bernd C. [1 ]
机构
[1] Goppert Weg 5, D-37077 Gottingen, Germany
关键词
Product of primes; Bernoulli polynomials; Denominator; Sum of base-p digits; p-Adic valuation of polynomials;
D O I
10.1016/j.jnt.2017.03.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the properties of the product, which runs over the primes, P-n = Pi(sp(n)>= p) p (n >= 1), sp 01) > P where s(p)(n) denotes the sum of the base-p digits of n. One important property is the fact that p(n) equals the denominator of the Bernoulli polynomial B-n(x) - B-n, where we provide a short p-adic proof. Moreover, we consider the decomposition P-n = P-n(-) . P-n(+), where p(n)(+) contains only those primes p > root n. Let omega(.) denote the number of prime divisors. We show that omega(p(n)(+)) < root n, while we raise the explicit conjecture that omega(P-n(+)) similar to kappa (log n)/(root n) as n -> infinity with a certain constant kappa > 1, supported by several computations. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:126 / 141
页数:16
相关论文
共 50 条