Ultrametric Diffusion, Exponential Landscapes, and the First Passage Time Problem

被引:23
|
作者
Torresblanca-Badillo, Anselmo [1 ]
Zuniga-Galindo, W. A. [2 ]
机构
[1] Univ Norte, Dept Matemat & Estadist, Km 5 Via Puerto Colombia, Barranquilla, Colombia
[2] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Matemat, Unidad Queretaro Libramiento Norponiente 2000, Santiago De Queretaro 76230, Qro, Mexico
关键词
Markov processes; Ultradiffusion; Relaxation of complex systems; The first passage time problem; p-Adic analysis; VARIABLE-COEFFICIENTS; PARABOLIC EQUATIONS; TRANSITIONS; RELAXATION; OPERATORS;
D O I
10.1007/s10440-018-0165-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study certain ultradiffusion equations connected with energy landscapes of exponential type. These equations are connected with the p-adic models of complex systems introduced by Avetisov et al. We show that the fundamental solutions of these equations are transition density functions of Levy processes with state space Q(p)(n), we also study some aspects of these processes including the first passage time problem.
引用
收藏
页码:93 / 116
页数:24
相关论文
共 50 条