General Framework for Meta-Analysis of Haplotype Association Tests

被引:0
|
作者
Wang, Shuai [1 ]
Zhao, Jing Hua [2 ]
An, Ping [3 ]
Guo, Xiuqing [4 ]
Jensen, Richard A. [5 ,6 ]
Marten, Jonathan [7 ]
Huffman, Jennifer E. [7 ]
Meidtner, Karina [8 ]
Boeing, Heiner [9 ]
Campbell, Archie [10 ]
Rice, Kenneth M. [11 ]
Scott, Robert A.
Yao, Jie [4 ]
Schulze, Matthias B. [8 ,12 ]
Wareham, Nicholas J.
Borecki, Ingrid B. [3 ]
Province, Michael A. [3 ]
Rotter, Jerome I. [4 ]
Hayward, Caroline [6 ,10 ]
Goodarzi, Mark O. [13 ]
Meigs, James B. [14 ,15 ]
Dupuis, Josee [1 ,16 ]
机构
[1] Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA USA
[2] Univ Cambridge, MRC, Epidemiol Unit, Sch Clin Med,Inst Metab Sci, Box 285,Cambridge Biomed Campus, Cambridge, England
[3] Washington Univ, Sch Med, Dept Genet, Div Stat Gen, St Louis, MO 63110 USA
[4] Univ Calif Los Angeles, Med Ctr, LABioMed Harbor, Dept Pediat,Inst Translat Genom & Populat Sci, Torrance, CA 90509 USA
[5] Univ Washington, Cardiovasc Hlth Res Unit, Seattle, WA 98195 USA
[6] Univ Washington, Dept Med, Seattle, WA USA
[7] Univ Edinburgh, Human Genet Unit, MRC, MRC IGMM, Edinburgh EH8 9YL, Midlothian, Scotland
[8] German Inst Human Nutr Potsdam Rehbrucke, Dept Mol Epidemiol, Nuthetal, Germany
[9] German Inst Human Nutr Potsdam Rehbrucke, Dept Epidemiol, Nuthetal, Germany
[10] Univ Edinburgh, Ctr Genom & Expt Med, Inst Genet & Mol Med, Generat Scotland,Western Gen Hosp, Edinburgh, Midlothian, Scotland
[11] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[12] German Ctr Diabet Res DZD, Munich, Germany
[13] Cedars Sinai Med Ctr, Div Endocrinol Diabet & Metab, Los Angeles, CA 90048 USA
[14] Massachusetts Gen Hosp, Div Gen Med, Boston, MA 02114 USA
[15] Harvard Univ, Sch Med, Dept Med, Boston, MA USA
[16] NHLBI, Framingham Heart Study, Framingham, MA USA
基金
英国医学研究理事会; 英国惠康基金;
关键词
meta-analysis; haplotype association tests; family samples; linear mixed effects model; FASTING GLUCOSE; TRAITS; LOCI; LASSO;
D O I
10.1002/gepi.21959
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
For complex traits, most associated single nucleotide variants (SNV) discovered to date have a small effect, and detection of association is only possible with large sample sizes. Because of patient confidentiality concerns, it is often not possible to pool genetic data from multiple cohorts, and meta-analysis has emerged as the method of choice to combine results from multiple studies. Many meta-analysis methods are available for single SNV analyses. As new approaches allow the capture of low frequency and rare genetic variation, it is of interest to jointly consider multiple variants to improve power. However, for the analysis of haplotypes formed by multiple SNVs, meta-analysis remains a challenge, because different haplotypes may be observed across studies. We propose a two-stage meta-analysis approach to combine haplotype analysis results. In the first stage, each cohort estimate haplotype effect sizes in a regression framework, accounting for relatedness among observations if appropriate. For the second stage, we use a multivariate generalized least square meta-analysis approach to combine haplotype effect estimates from multiple cohorts. Haplotype-specific association tests and a global test of independence between haplotypes and traits are obtained within our framework. We demonstrate through simulation studies that we control the type-I error rate, and our approach is more powerful than inverse variance weighted meta-analysis of single SNV analysis when haplotype effects are present. We replicate a published haplotype association between fasting glucose-associated locus (G6PC2) and fasting glucose in seven studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and we provide more precise haplotype effect estimates.
引用
收藏
页码:244 / 252
页数:9
相关论文
共 50 条
  • [1] General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies
    Lee, Seunggeun
    Teslovich, Tanya M.
    Boehnke, Michael
    Lin, Xihong
    AMERICAN JOURNAL OF HUMAN GENETICS, 2013, 93 (01) : 42 - 53
  • [2] Meta-Analysis of Rare Variant Association Tests in Multiethnic Populations
    Mensah-Ablorh, Akweley
    Lindstrom, Sara
    Haiman, Christopher A.
    Henderson, Brian E.
    Le Marchand, Loic
    Lee, Seunngeun
    Stram, Daniel O.
    Eliassen, A. Heather
    Price, Alkes
    Kraft, Peter
    GENETIC EPIDEMIOLOGY, 2016, 40 (01) : 57 - 65
  • [3] A general framework for the use of logistic regression models in meta-analysis
    Simmonds, Mark C.
    Higgins, Julian P. T.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (06) : 2858 - 2877
  • [4] A general framework for comparative Bayesian meta-analysis of diagnostic studies
    Joris Menten
    Emmanuel Lesaffre
    BMC Medical Research Methodology, 15
  • [5] A general framework for comparative Bayesian meta-analysis of diagnostic studies
    Menten, Joris
    Lesaffre, Emmanuel
    BMC MEDICAL RESEARCH METHODOLOGY, 2015, 15
  • [6] Haplotype analysis of VDR gene polymorphisms: a meta-analysis
    Ammarin Thakkinstian
    Catherine D’Este
    John Attia
    Osteoporosis International, 2004, 15 : 729 - 734
  • [7] Meta-analysis of haplotype-association studies: comparison of methods and empirical evaluation of the literature
    Pantelis G Bagos
    BMC Genetics, 12
  • [8] Haplotype analysis of VDR gene polymorphisms: a meta-analysis
    Thakkinstian, A
    D'Este, C
    Attia, J
    OSTEOPOROSIS INTERNATIONAL, 2004, 15 (09) : 729 - 734
  • [9] Meta-analysis of haplotype-association studies: comparison of methods and empirical evaluation of the literature
    Bagos, Pantelis G.
    BMC GENETICS, 2011, 12
  • [10] General retrospective mega-analysis framework for rare variant association tests
    Chien, Li-Chu
    Chiu, Yen-Feng
    GENETIC EPIDEMIOLOGY, 2018, 42 (07) : 621 - 635