PROPAGATION OF ACOUSTIC WAVE IN ONE-DIMENSIONAL PHONONIC CRYSTALS WITH MAGNETORHEOLOGICAL FLUIDS

被引:0
|
作者
Li, Xiao-lei [1 ]
Du, Jian-ke [1 ]
Wang, Ji [1 ]
机构
[1] Ningbo Univ, Sch Mech Engn & Mech, Ningbo 315211, Zhejiang, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Phononic crystal; MRF; Band gaps; Finite element method;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we present a kind of phononic crystals(PCs) with magnetorheological fluids(MRFs) and its band gaps can be tuned by the magnetic field for the reason that modulus of MRFs can be changed by means of the magnetic field. Finite element method and experimental method are applied to study the propagation of acoustic waves in the PC. Firstly, we obtain the variety of the shear storage modulus and the loss modulus of MRFs under different magnetic flux density. Secondly, relationships between the magnetic flux density and band gaps of the PC are achieved. We find that band gaps change in response to the magnetic field at first, but they keep constant when MRFs reach magnetic saturation state. The results demonstrate the feasibility of tuning band gaps by MRFs with changed magnetic field.
引用
收藏
页码:235 / 238
页数:4
相关论文
共 50 条
  • [1] PROPAGATION OF SURFACE ACOUSTIC WAVE IN ONE-DIMENSIONAL PIEZOELECTRIC PHONONIC CRYSTALS
    Yang, Guang-ying
    Du, Jian-ke
    Wang, Ji
    [J]. 2014 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES, AND DEVICE APPLICATIONS (SPAWDA), 2014, : 366 - 369
  • [2] Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators
    Wang, Zhi Guo
    Lee, Sam Hyeon
    Kim, Chul Koo
    Park, Choon Mahn
    Nahm, Kyun
    Nikitov, S. A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 103 (06)
  • [3] Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals
    Ponge, Marie-Fraise
    Croenne, Charles
    Vasseur, Jerome O.
    Matar, Olivier Bou
    Hladky-Hennion, Anne-Christine
    Dubus, Bertrand
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2016, 139 (06): : 3287 - 3294
  • [4] Generalized eigenproblem of hybrid matrix for Floquet wave propagation in one-dimensional phononic crystals with solids and fluids
    Tan, Eng Leong
    [J]. ULTRASONICS, 2010, 50 (01) : 91 - 98
  • [5] Wave propagation in one-dimensional photonic crystals
    Felbacq, D
    Guizal, B
    Zolla, F
    [J]. OPTICS COMMUNICATIONS, 1998, 152 (1-3) : 119 - 126
  • [6] Schlieren Visualization of Acoustic Propagation Characteristics in a One-Dimensional Phononic Crystal
    Jiang Xue-Ping
    Qian Meng-Lu
    Cheng Qian
    [J]. CHINESE PHYSICS LETTERS, 2013, 30 (08)
  • [7] Enhanced absorption in one-dimensional phononic crystals with interfacial acoustic waves
    Lee, B. J.
    To, A. C.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (03)
  • [8] One-Dimensional Hypersonic Phononic Crystals
    Gomopoulos, N.
    Maschke, D.
    Koh, C. Y.
    Thomas, E. L.
    Tremel, W.
    Butt, H. -J.
    Fytas, G.
    [J]. NANO LETTERS, 2010, 10 (03) : 980 - 984
  • [9] Angular wave propagation through one-dimensional phononic crystals made of functionally graded auxetic nanocomposites
    Guo, Liangteng
    Zhao, Shaoyu
    Yang, Jie
    Kitipornchai, Sritawat
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2024, 103
  • [10] Propagation characteristics of anti-plane wave in one-dimensional fluid saturated porous phononic crystals
    Zhang, Shuyan
    Wang, Yanfeng
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (09): : 283 - 289