Mixture of Multilayer Perceptron Regressions

被引:1
|
作者
Nakano, Ryohei [1 ]
Satoh, Seiya [2 ]
机构
[1] Chubu Univ, 1200 Matsumoto Cho, Kasugai, Aichi 4878501, Japan
[2] Tokyo Denki Univ, Hatoyama Machi, Saitama 3500394, Japan
关键词
Mixture Models; Regression; Multilayer Perceptrons; EM Algorithm; Model Selection;
D O I
10.5220/0007367405090516
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates mixture of multilayer perceptron (MLP) regressions. Although mixture of MLP regressions (MoMR) can be a strong fitting model for noisy data, the research on it has been rare. We employ soft mixture approach and use the Expectation-Maximization (EM) algorithm as a basic learning method. Our learning method goes in a double-looped manner; the outer loop is controlled by the EM and the inner loop by MLP learning method. Given data, we will have many models; thus, we need a criterion to select the best. Bayesian Information Criterion (BIC) is used here because it works nicely for MLP model selection. Our experiments showed that the proposed MoMR method found the expected MoMR model as the best for artificial data and selected the MoMR model having smaller error than any linear models for real noisy data.
引用
收藏
页码:509 / 516
页数:8
相关论文
共 50 条
  • [1] A MODIFIED MULTILAYER PERCEPTRON MODEL FOR GAS-MIXTURE ANALYSIS
    MOORE, SW
    GARDNER, JW
    HINES, EL
    GOPEL, W
    WEIMAR, U
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 1993, 16 (1-3) : 344 - 348
  • [2] Approximating Gaussian Mixture Model or Radial Basis Function Network With Multilayer Perceptron
    Patrikar, Ajay M.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (07) : 1161 - 1166
  • [3] PULSATING MULTILAYER PERCEPTRON
    Pupezescu, Valentin
    [J]. ELEARNING VISION 2020!, VOL I, 2016, : 243 - 250
  • [4] A hyperbolic multilayer perceptron
    Buchholz, S
    Sommer, G
    [J]. IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL II, 2000, : 129 - 133
  • [5] Hyperconic Multilayer Perceptron
    Juan Pablo Serrano-Rubio
    Arturo Hernández-Aguirre
    Rafael Herrera-Guzmán
    [J]. Neural Processing Letters, 2017, 45 : 29 - 58
  • [6] LEARNING IN THE MULTILAYER PERCEPTRON
    BENEDICT, KA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (11): : 2643 - 2650
  • [7] Hyperconic Multilayer Perceptron
    Pablo Serrano-Rubio, Juan
    Hernandez-Aguirre, Arturo
    Herrera-Guzman, Rafael
    [J]. NEURAL PROCESSING LETTERS, 2017, 45 (01) : 29 - 58
  • [8] Generalization tools for the multilayer perceptron
    Magnus, AL
    Oxley, ME
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 2911 - 2916
  • [9] Information geometry of multilayer perceptron
    Amari, S
    [J]. BRAIN-INSPIRED IT I, 2004, 1269 : 3 - 5
  • [10] An extended class of multilayer perceptron
    Lopez, R.
    Onate, E.
    [J]. NEUROCOMPUTING, 2008, 71 (13-15) : 2538 - 2543