Model of Diatomic Homonuclear Molecule Scattering by Atom or Barriers

被引:1
|
作者
Gusev, A. A. [1 ]
Chuluunbaatar, O. [1 ,5 ]
Vinitsky, S. I. [1 ,2 ]
Hai, L. L. [1 ,6 ]
Derbov, V. L. [3 ]
Krassovitskiy, P. M. [4 ]
机构
[1] Joint Inst Nucl Res, Dubna, Russia
[2] RUDN Univ, Peoples Friendship Univ Russia, 6 Miklukho Maklaya Str, Moscow 117198, Russia
[3] Saratov NG Chernyshevskii State Univ, Saratov, Russia
[4] Inst Nucl Phys, Alma Ata, Kazakhstan
[5] Natl Univ Mongolia, Inst Math, Univ St, Ulaanbaatar, Mongolia
[6] Ho Chi Minh City Univ Educ, Ho Chi Minh City, Vietnam
基金
俄罗斯基础研究基金会;
关键词
Parametric boundary-value problems; Second-order ordinary differential equations; Finite element method; COMPUTING ENERGY-LEVELS; RADIAL WAVE-FUNCTIONS; 1ST DERIVATIVES; REACTION MATRIX; PROGRAM; EIGENFUNCTIONS; EIGENVALUES; PARAMETER; RESPECT; KANTBP;
D O I
10.1007/978-3-319-51917-3_44
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The mathematical model of quantum tunnelling of diatomic homonuclear molecules through repulsive barriers or scattering by an atom is formulated in the s-wave approximation. The 2D boundary-value problem (BVP) in polar coordinates is reduced to a 1D BVP for a set of second-order ODEs by means of Kantorovich expansion over the set of parametric basis functions. The algorithm for calculating the asymptotic form of the parametric basis functions and effective potentials of the ODEs at large values of the parameter (hyperradial variable) is presented. The solution is sought by matching the numerical solution in one of the subintervals with the analytical solution in the adjacent one. The efficiency of the algorithm is confirmed by comparing the calculated solutions with those of the parametric eigenvalue problem obtained by applying the finite element method in the entire domain of definition at large values of the parameter. The applicability of algorithms and software are demonstrated by the example of benchmark calculations of discrete energy spectrum of the trimer Be3 in collinear configuration.
引用
收藏
页码:511 / 524
页数:14
相关论文
共 50 条
  • [1] Model of diatomic homonuclear molecule scattering by atom or barriers
    Joint Institute for Nuclear Research, Dubna, Russia
    不详
    117198, Russia
    不详
    不详
    不详
    不详
    Commun. Comput. Info. Sci., 1865, (511-524):
  • [2] Three-body scattering model: diatomic homonuclear molecule and atom in collinear configuration
    Vinitsky, S. I.
    Gusev, A. A.
    Chuluunbaatar, O.
    Derbov, V. L.
    Krassovitskiy, P. M.
    Hai, L. L.
    SARATOV FALL MEETING 2016 - LASER PHYSICS AND PHOTONICS XVII; AND COMPUTATIONAL BIOPHYSICS AND ANALYSIS OF BIOMEDICAL DATA III, 2017, 10337
  • [3] COLLINEAR COLLISION OF AN ATOM WITH A HOMONUCLEAR DIATOMIC MOLECULE
    VANDIJK, W
    RAZAVY, M
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1979, 16 (06) : 1249 - 1263
  • [4] Interaction of a halogen atom with a homonuclear diatomic molecule at medium distances
    Reznikov, AI
    Umanskii, SY
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 2002, 76 : S13 - S20
  • [5] UNITED-ATOM PROJECTED PERTURBATION-THEORY FOR A HOMONUCLEAR DIATOMIC MOLECULE
    ATALAY, B
    MANN, A
    PRIVMAN, V
    PHYSICS LETTERS A, 1978, 65 (03) : 193 - 195
  • [6] ROTATIONAL HYPERPOLARIZABILITY OF A HOMONUCLEAR DIATOMIC MOLECULE
    SHELTON, DP
    PHYSICAL REVIEW A, 1987, 36 (07): : 3461 - 3463
  • [7] ROTATIONAL HYPERPOLARIZABILITY OF A HOMONUCLEAR DIATOMIC MOLECULE - COMMENT
    BISHOP, DM
    SHELTON, DP
    PHYSICAL REVIEW A, 1988, 38 (03): : 1656 - 1656
  • [8] HOMONUCLEAR DIATOMIC SCATTERING FROM SOLID-SURFACES - HARDCUBE MODEL
    NICHOLS, WL
    WEARE, JH
    JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (09): : 3754 - 3762
  • [9] THERMAL SCATTERING OF ATOMS BY HOMONUCLEAR DIATOMIC MOLECULES
    BERNSTEIN, RB
    DALGARNO, A
    MASSEY, H
    PERCIVAL, IC
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1963, 274 (1356) : 427 - +
  • [10] CALCULATION OF THE TRANSITION MATRIX ELEMENTS FOR AN ATOM-DIATOMIC MOLECULE SCATTERING
    丁世良
    邓从豪
    Science in China,SerB., 1989, Ser.B.1989 (12) : 1415 - 1421