机构:
Natl & Kapodistrian Univ Athens, Dept Econ, Athens, Greece
North West Univ, Unit Business Math & Informat, Potchefstroom, South AfricaKarlsruhe Inst Technol, Inst Stochast, Karlsruhe, Germany
We consider estimation of stochastic volatility models which are driven by a heavy-tailed innovation distribution. Exploiting the simple structure of the characteristic function of suitably transformed observations we propose an estimator which minimizes a weighted L-2-type distance between the theoretical characteristic function of these observations and an empirical counterpart. A related goodness-of-fit test is also proposed. Monte-Carlo results are presented. The procedures are also applied to real data from the financial markets.
机构:
Georgia State Univ, Dept Risk Management & Insurance, Atlanta, GA 30302 USAGeorgia State Univ, Dept Risk Management & Insurance, Atlanta, GA 30302 USA
机构:
Univ Fed Rio de Janeiro, Dept Stat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Dept Stat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, Brazil
Abanto-Valle, Carlos A.
Langrock, Roland
论文数: 0引用数: 0
h-index: 0
机构:
Bielefeld Univ, Dept Business Adm & Econ, Postfach 10 01 31, D-33501 Bielefeld, GermanyUniv Fed Rio de Janeiro, Dept Stat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, Brazil
Langrock, Roland
Chen, Ming-Hui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Connecticut, Dept Stat, U-4120, Storrs, CT 06269 USAUniv Fed Rio de Janeiro, Dept Stat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, Brazil
Chen, Ming-Hui
Cardoso, Michel V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Dept Stat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Dept Stat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, Brazil