Geometric factors affecting capillary discharge jet length in atmospheric pressure air

被引:3
|
作者
Li, Lee [1 ,2 ]
Xiong, Jiaming [1 ]
Cheng, Yong [1 ]
Peng, Mingyang [1 ]
Pan, Yuan [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Engn & Technol, Wuhan, Hubei Province, Peoples R China
[2] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr, IFSA, Shanghai, Peoples R China
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2017年 / 88卷 / 06期
关键词
ABLATION; ARCS; PLASMA; MODEL; GUN;
D O I
10.1063/1.4983842
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The capillary discharge triggered by a pulse source can produce a certain length of plasma jet. In this paper, the physical process of the capillary discharge jet is analyzed, and it is pointed out that the capillary plasma-jet length is significantly affected by the expansion pressure caused by the arc discharge in the capillary chamber. The greater the pressure in the capillary chamber is, the longer the jet length. The experimental setup of the capillary discharge is established in atmospheric pressure air. The influence of the surface distance along the capillary wall, the diameter of the capillary cathode, and the length of the cathode tip on the plasma-jet length is studied under a specific trigger pulse. The experimental results show that the greater the deposited energy density in the capillary chamber is, the longer the plasma jet length. As the surface distance increases, the energy deposited in the arc channel increases first and then tends to be saturated. There is an optimum surface distance to maximize the energy density in the capillary chamber, while the plasma jet length is the longest. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Simulation of the discharge propagation in a capillary tube in air at atmospheric pressure
    Jansky, Jaroslav
    Tholin, Fabien
    Bonaventura, Zdenek
    Bourdon, Anne
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (39)
  • [2] Discharge and Plasma Bullet Formation in a Capillary DBD Atmospheric-Pressure Microplasma Jet
    Oh, Jun-Seok
    Bryant, Paul M.
    Bradley, James W.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2352 - 2353
  • [3] Experimental and numerical study of the propagation of a discharge in a capillary tube in air at atmospheric pressure
    Jansky, Jaroslav
    Le Delliou, Pierre
    Tholin, Fabien
    Tardiveau, Pierre
    Bourdon, Anne
    Pasquiers, Stehane
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (33)
  • [4] Development of a dielectric barrier discharge enhanced plasma jet in atmospheric pressure air
    Li, Xuechen
    Chang, Yuanyuan
    Jia, Pengying
    Xu, Longfei
    Fang, Tongzhen
    Wang, Long
    PHYSICS OF PLASMAS, 2012, 19 (09)
  • [5] Study on formation mechanism of atmospheric pressure glow discharge air plasma jet
    Liu, Wenzheng
    Li, Zhiyi
    Zhao, Luxiang
    Zheng, Qingtian
    Ma, Chuanlong
    PHYSICS OF PLASMAS, 2018, 25 (08)
  • [6] Research on effect of air gap length on epoxy resin barrier discharge in atmospheric pressure air
    Zhang M.
    Zheng Q.
    Luo L.
    Sheng G.
    Jiang X.
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2024, 28 (05): : 17 - 26
  • [7] Propagation of an Air Discharge at Atmospheric Pressure in a Capillary Glass Tube: Influence of the Tube Radius on the Discharge Structure
    Jansky, Jaroslav
    Le Delliou, Pierre
    Tholin, Fabien
    Bonaventura, Zdenek
    Tardiveau, Pierre
    Bourdon, Anne
    Pasquiers, Stephane
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2106 - 2107
  • [8] Length control of He atmospheric plasma jet plumes: Effects of discharge parameters and ambient air
    Xiong, Q.
    Lu, X.
    Ostrikov, K.
    Xiong, Z.
    Xian, Y.
    Zhou, F.
    Zou, C.
    Hu, J.
    Gong, W.
    Jiang, Z.
    PHYSICS OF PLASMAS, 2009, 16 (04)
  • [9] Discharge Dynamics and Modes of an Atmospheric Pressure Non-Equilibrium Air Plasma Jet
    Xian, YuBin
    Wu, ShuQun
    Wang, Zhan
    Huang, QuanJun
    Lu, XinPei
    Kolb, Juergen F.
    PLASMA PROCESSES AND POLYMERS, 2013, 10 (04) : 372 - 378
  • [10] Surface charge deposition inside a capillary glass tube by an atmospheric pressure discharge in air
    Jansky, J.
    Bourdon, A.
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2011, 55 (01):