A PSO-based Approach for Tuning of PD Controller of a Hexacopter

被引:1
|
作者
Maniscalco, Vincenzo [1 ]
Lombardo, Francesco [1 ]
机构
[1] Kore Univ Enna, Cittadella Univ, I-94100 Enna, Italy
关键词
Particle Swarm Optimization; Unmanned Aerial Vehicle; PD Controller;
D O I
10.1063/1.4938967
中图分类号
O59 [应用物理学];
学科分类号
摘要
Tuning the parameters of a Proportional Derivative (PD) controller applied to control the trajectory of a hexacopter is a continuos and multidimensional optimization problem which can be solved using a Particle Swarm Optimization (PSO) algorithm. It is an efficient heuristic optimization technique that simulates the collective social behaviour of a biological population, such as birds flock, to find the optimal or near optimal solutions of a multivariable objective function in a continuos search space. The aim of this paper is to tune the PD controller parameters using PSO algorithm in order to minimize the hexacopter trajectory error. Performance of PSO-based approach proposed are evaluated considering the Integral Square Error (ISE) of the hexacopter trajectory as objective function. Simulation results show the effectiveness of the PD tuning using PSO-based optimization approach for a desired trajectory.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] ADAPTIVE PSO-BASED SELF -TUNING PID CONTROLLER FOR ULTRASONIC MOTOR
    Djoewahir, Alrijadjis
    Tanaka, Kanya
    Nakashima, Shota
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2013, 9 (10): : 3903 - 3914
  • [2] PI-controller tuning optimization via PSO-based technique
    Romasevych, Yuriy
    Loveikin, Viatcheslav
    Usenko, Sergii
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2019, 95 (07): : 33 - 37
  • [3] A three-stage PSO-based methodology for tuning an optimal PD-controller for robotic arm manipulators
    Tarek A. Tutunji
    Mustafa Al-Khawaldeh
    Malek Alkayyali
    [J]. Evolutionary Intelligence, 2022, 15 : 381 - 396
  • [4] A three-stage PSO-based methodology for tuning an optimal PD-controller for robotic arm manipulators
    Tutunji, Tarek A.
    Al-Khawaldeh, Mustafa
    Alkayyali, Malek
    [J]. EVOLUTIONARY INTELLIGENCE, 2022, 15 (01) : 381 - 396
  • [5] PSO-based On-line Tuning PID Controller for Setpoint Changes and Load Disturbance
    Chen, Ping-Lin
    Yang, Ming-Chin
    Sun, Tsung-Ying
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1887 - 1894
  • [6] Development of PSO-based PID Tuning Method
    Oi, Akihiro
    Nakazawa, Chikashi
    Matsui, Tetsuro
    Fujiwara, Hiroe
    Matsumoto, Kouji
    Nishida, Hideyuki
    Ando, Jun
    Kawaura, Masato
    [J]. 2008 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS, VOLS 1-4, 2008, : 1622 - +
  • [7] PSO-based controller parameters design for spacecraft
    Zhang, Jing-Rui
    Wang, Heng
    [J]. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2010, 30 (04): : 425 - 428
  • [8] A PSO-based Approach to Optimize the Triangular Membership Functions in a Fuzzy Logic Controller
    Maniscalco, Vincenzo
    Lombardo, Francesco
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017), 2017, 1906
  • [9] STATCOM control using a PSO-based IP controller
    [J]. Farahani, S.S.S, 1600, Maxwell Science Publications (04):
  • [10] PSO-Based LQR Controller for Multi Modular Converters
    Rakhshani, E.
    Cantarellas, A. M.
    Remon, D.
    Luna, A.
    Rodriguez, P.
    [J]. 2013 IEEE ECCE ASIA DOWNUNDER (ECCE ASIA), 2013, : 1023 - 1027