Point Estimation for the Ratio of Medians of Two Independent Log-Normal Distributions

被引:2
|
作者
Singhasomboon, Lapasrada [1 ]
Panichkitkosolkul, Wararit [1 ]
Volodin, Andrei [2 ]
机构
[1] Thammasat Univ, Dept Math & Stat, Phathum Thant, Thailand
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
关键词
point estimation; central tendency; skewed distribution; normal approximation; simulation; CONFIDENCE-INTERVAL ESTIMATION; INFERENCES; DIFFERENCE;
D O I
10.1134/S1995080221020177
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We focus on the normal approximation for point estimation of the ratios of medians of two independent, log-normal distributions. We investigate its performance in terms of bias, variance, and mean square error, using Monte Carlo simulations. The results show that the normal approximation, which is relatively simple, provides a reliable result. The normal approximation approaches could be recommended on the basis of the specific values of the parameters and/or sample sizes. The point estimation is illustrated using real data examples.
引用
收藏
页码:415 / 425
页数:11
相关论文
共 50 条
  • [1] Point Estimation for the Ratio of Medians of Two Independent Log-Normal Distributions
    Lapasrada Singhasomboon
    Wararit Panichkitkosolkul
    Andrei Volodin
    [J]. Lobachevskii Journal of Mathematics, 2021, 42 : 415 - 425
  • [2] Confidence intervals for the ratio of medians of two independent log-normal distributions
    Singhasomboon, Lapasrada
    Panichkitkosolkul, Wararit
    Volodin, Andrei
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (11) : 6729 - 6738
  • [3] Confidence Intervals Based on the Difference of Medians for Independent Log-Normal Distributions
    Tian, Weizhong
    Yang, Yaoting
    Tong, Tingting
    [J]. MATHEMATICS, 2022, 10 (16)
  • [4] Likelihood analysis for the ratio of means of two independent log-normal distributions
    Wu, JR
    Jiang, GY
    Wong, ACM
    Sun, X
    [J]. BIOMETRICS, 2002, 58 (02) : 463 - 469
  • [5] Comparing the mean vectors of two independent multivariate log-normal distributions
    Lin, S. H.
    [J]. JOURNAL OF APPLIED STATISTICS, 2014, 41 (02) : 259 - 274
  • [6] BES - AN ALGORITHM FOR ESTIMATION IN LOG-NORMAL DISTRIBUTIONS
    ELZINGA, CH
    [J]. BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 1985, 17 (04): : 505 - 507
  • [7] Estimation of confidence intervals for the log-normal means and for the ratio and difference of log-normal means
    Cimermanova, K.
    [J]. Measurement 2007: 6th International Conference on Measurement, Proceedings, 2007, : 85 - 88
  • [8] LOG-NORMAL DISTRIBUTIONS IN PARASITOLOGY
    MALHOTRA, SK
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-ANIMAL SCIENCES, 1984, 93 (06): : 591 - 598
  • [9] NORMAL OR LOG-NORMAL - APPROPRIATE DISTRIBUTIONS
    HEATH, DF
    [J]. NATURE, 1967, 213 (5081) : 1159 - +
  • [10] Asymptotic and Bootstrap Confidence Intervals for the Ratio of Modes of Log-normal Distributions
    Singhasomboon, Lapasrada
    Gao, Chengyu
    Sirisaiyard, Sasiwimon
    Panichkitkosolkul, Wararit
    Volodin, Andrei
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (09) : 3860 - 3871