Horizon picking in 3D seismic data volumes

被引:38
|
作者
Faraklioti, M
Petrou, M [1 ]
机构
[1] Univ Surrey, Sch Elect & Phys Sci, Guildford GU2 7XH, Surrey, England
[2] CERTH, Inst Telemat & Informat, Thessaloniki 57001, Greece
关键词
3D seismic data; horizon picking; surface detection;
D O I
10.1007/s00138-004-0151-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present an automatic horizon-picking algorithm, based on a surface detection technique, to detect horizons in 3D seismic data. The surface detection technique, and the use of 6-connectivity, allows us to detect fragments of horizons that are afterwards combined to form full horizons. The criteria of combining the fragments are similarity of orientation of the fragments, as expressed by their normal vectors, and proximity using 18-connectivity. The identified horizons are interrupted at faults, as required by the experts.
引用
收藏
页码:216 / 219
页数:4
相关论文
共 50 条
  • [1] Horizon picking in 3D seismic data volumes
    Maria Faraklioti
    Maria Petrou
    [J]. Machine Vision and Applications, 2004, 15 : 216 - 219
  • [2] Horizon picking in 3D seismic images
    Faraklioti, M
    Petrou, M
    [J]. IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 : 216 - 222
  • [3] Dynamic picking system for 3D seismic data: Design and evaluation
    Salom, Pierre
    Megret, Remi
    Donias, Marc
    Berthoumieu, Yannick
    [J]. INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES, 2009, 67 (07) : 551 - 560
  • [4] Towards robust structure-based enhancement and horizon picking in 3-D seismic data
    O'Malley, SA
    Kakadiaris, IA
    [J]. PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, 2004, : 482 - 489
  • [5] Predictive painting of 3D seismic volumes
    Fomel, Sergey
    [J]. GEOPHYSICS, 2010, 75 (04) : A25 - A30
  • [6] Lossless compression of 3D seismic data using a horizon displacement compensated 3D lifting scheme
    Meftah, Anis
    Antonini, Marc
    Ben Amar, Chokri
    [J]. WAVELET APPLICATIONS IN INDUSTRIAL PROCESSING VII, 2010, 7535
  • [7] Extracting horizon surfaces from 3D seismic data using deep learning
    Tschannen, Valentin
    Delescluse, Matthias
    Ettrich, Norman
    Keuper, Janis
    [J]. GEOPHYSICS, 2020, 85 (03) : N17 - N26
  • [8] An artificial intelligence workflow for horizon volume generation from 3D seismic data
    Abubakar A.
    Di H.
    Li Z.
    Maniar H.
    Zhao T.
    [J]. Leading Edge, 2024, 43 (04): : 235 - 243
  • [9] Exploring the seismic expression of fault zones in 3D seismic volumes
    Iacopini, D.
    Butler, R. W. H.
    Purves, S.
    McArdle, N.
    De Freslon, N.
    [J]. JOURNAL OF STRUCTURAL GEOLOGY, 2016, 89 : 54 - 73
  • [10] Neural network for seismic horizon picking
    Huang, KY
    [J]. IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 1840 - 1844