Joint-MAP Bayesian tomographic reconstruction with a gamma-mixture prior

被引:31
|
作者
Hsiao, IT
Rangarajan, A
Gindi, G
机构
[1] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11784 USA
[2] SUNY Stony Brook, Dept Radiol, Stony Brook, NY 11784 USA
[3] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
关键词
gamma mixture; joint-MAP estimation; mixture decomposition; tomographic reconstruction;
D O I
10.1109/TIP.2002.806254
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of Bayesian image reconstruction with a prior that captures the notion of a clustered intensity histogram. The problem is formulated in the framework of a joint-MAP (maximum a posteriori) estimation with the prior pdf modeled as a mixture-of-gammas density. This prior pdf has appealing properties, including positivity enforcement. The joint MAP optimization is carried out as an iterative alternating descent wherein a regularized likelihood estimate is followed by a mixture decomposition of the histogram of the current tomographic image estimate. The mixture decomposition step estimates the hyperparameters of the prior pdf. The objective functions associated with the joint MAP estimation are complicated and difficult to optimize, but we show how they may be transformed to allow for much easier optimization while preserving the fixed point of the iterations. We demonstrate the method in the context of medical emission and transmission tomography.
引用
收藏
页码:1466 / 1477
页数:12
相关论文
共 16 条
  • [1] JOINT-MAP TOMOGRAPHIC RECONSTRUCTION WITH PATCH SIMILARITY BASED MIXTURE PRIOR MODEL
    Chen, Yang
    Li, Yinsheng
    Yu, Weimin
    Luo, Limin
    Chen, Wufan
    Toumoulin, Christine
    [J]. MULTISCALE MODELING & SIMULATION, 2011, 9 (04): : 1399 - 1419
  • [2] A gamma-mixture class of distributions with Bayesian application
    van Niekerk, Janet
    Bekker, Andriette
    Arashi, Mohammad
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (10) : 8152 - 8165
  • [3] Tomographic Image Reconstruction with a Spatially Varying Gamma Mixture Prior
    Papadimitriou, Katerina
    Sfikas, Giorgos
    Nikou, Christophoros
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2018, 60 (08) : 1355 - 1365
  • [4] Tomographic Image Reconstruction with a Spatially Varying Gamma Mixture Prior
    Katerina Papadimitriou
    Giorgos Sfikas
    Christophoros Nikou
    [J]. Journal of Mathematical Imaging and Vision, 2018, 60 : 1355 - 1365
  • [5] Mixture model based joint-MAP reconstruction of attenuation and activity maps in TOF-PET
    Hemmati, H.
    Kamali-Asl, A.
    Ghafarian, P.
    Ay, M. R.
    [J]. JOURNAL OF INSTRUMENTATION, 2018, 13
  • [6] Gamma-mixture Bayesian method for anomalous coalmine pressure analysis
    Yang, Lingkai
    Cheng, Jian
    Luo, Yi
    Zhang, Xiaoyu
    Zhou, Tianbai
    Nie, Linhao
    [J]. Memetic Computing, 2024, 16 (04) : 549 - 561
  • [7] Nonlocal Prior Bayesian Tomographic Reconstruction
    Yang Chen
    Jianhua Ma
    Qianjin Feng
    Limin Luo
    Pengcheng Shi
    Wufan Chen
    [J]. Journal of Mathematical Imaging and Vision, 2008, 30 : 133 - 146
  • [8] Nonlocal prior Bayesian tomographic reconstruction
    Chen, Yang
    Ma, Jianhua
    Feng, Qianjin
    Luo, Limin
    Shi, Pengcheng
    Chen, Wufan
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 30 (02) : 133 - 146
  • [9] TOMOGRAPHIC IMAGE RECONSTRUCTION WITH A SPATIALLY VARYING GAUSSIAN MIXTURE PRIOR
    Papadimitriou, Katerina
    Nikou, Christophoros
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4002 - 4006
  • [10] Bayesian MAP estimation using Gaussian and diffused-gamma prior
    Goh, Gyuhyeong
    Dey, Dipak K.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2018, 46 (03): : 399 - 415