Type I periodic motions for nonlinear impact oscillators

被引:13
|
作者
Du, Zhengdong [1 ]
Li, Yurong
Zhang, Weinian
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
[2] SW Univ Finance & Econ, Sch Informat Engn, Chengdu 610074, Sichuan, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
impact oscillator; non-smooth system; Melnikov method; subharmonic bifurcation;
D O I
10.1016/j.na.2006.07.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a general class of nonlinear impact oscillators is considered for subharmonic bifurcation. This system can be used to model an inverted pendulum impacting on rigid walls under external periodic excitation and its unperturbed system possesses a pair of homoclinic cycles via the identification given by the impact law and three separate families of periodic orbits inside and outside the homoclinic cycles. By discussing the subharmonic orbits inside the homoclinic cycles, the subharmonic Melnikov method established for smooth dynamical systems is extended to be applicable to the non-smooth system. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1344 / 1358
页数:15
相关论文
共 50 条