From conformal Killing vector fields to boost-rotational symmetry

被引:0
|
作者
Estevez-Delgado, J. [1 ]
Zannias, T.
机构
[1] Univ Michoacana, Fac Ciencias Fis Matemat, Morelia 58040, Michoacan, Mexico
[2] Univ Michoacana, Fac Ciencias Fis Matemat, Morelia 58040, Michoacan, Mexico
关键词
general relativity; conformal Killing vector field; Einstein equations;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss a connection between three-dimensional Riemannian manifolds (Sigma, gamma) admitting a special conformal Killing vector field and static vacuum or non-vacuum spacetimes. Any such (Sigma, gamma) generates a vacuum spacetime (M, g) but it also generates a spacetime (M, g, Phi), where (g, Phi) satisfies the Einstein-Klein-Gordon massless minimally coupled gravity equations, or the Einstein-Conformal scalar field equations. The resulting spacetimes either admit four Killing vector fields or possess boost and rotational symmetry. We argue that this connection goes beyond the vacuum or Einstein-scalar field system and it should be viewed as a mechanism of generating solutions for the Einstein equations, admitting a hypersurface orthogonal Killing vector field.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
  • [1] Conformal Killing vector fields and a virial theorem
    Carinena, Jose F.
    Gheorghiu, Irina
    Martinez, Eduardo
    Santos, Patricia
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (46)
  • [2] Complex Surfaces and Null Conformal Killing Vector Fields
    Davidov, J.
    Grantcharov, G.
    Mushkarov, O.
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)
  • [3] THE BOCHNER VANISHING THEOREMS ON THE CONFORMAL KILLING VECTOR FIELDS
    Eker, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 114 - 120
  • [4] Complex Surfaces and Null Conformal Killing Vector Fields
    J. Davidov
    G. Grantcharov
    O. Mushkarov
    The Journal of Geometric Analysis, 2023, 33
  • [5] Harmonic Functions for Rotational Symmetry Vector Fields
    Shen, Zhongwei
    Fang, Xianzhong
    Liu, Xinguo
    Bao, Hujun
    Huang, Jin
    COMPUTER GRAPHICS FORUM, 2016, 35 (07) : 507 - 516
  • [6] CONFORMAL KILLING VECTOR FIELDS ON TIMELIKE 2-SURFACES
    DUPLESSIS, JC
    JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (03) : 329 - 333
  • [7] EXACT-SOLUTIONS WITH CONFORMAL KILLING VECTOR-FIELDS
    CASTEJONAMENEDO, J
    COLEY, AA
    CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (10) : 2203 - 2215
  • [8] SPACETIMES ADMITTING INHERITING CONFORMAL KILLING VECTOR-FIELDS
    COLEY, AA
    TUPPER, BOJ
    CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (11) : 1961 - 1981
  • [9] SPECIAL CONFORMAL KILLING VECTOR SPACE-TIMES AND SYMMETRY INHERITANCE
    COLEY, AA
    TUPPER, BOJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (11) : 2616 - 2625
  • [10] CONTACT RIEMANNIAN MANIFOLD WITH NON-KILLING CONFORMAL VECTOR FIELDS
    Dubey, Sudhir Kumar
    Chaudhary, O. P.
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2023, 22 (3-4):