Widder's Representation Theorem for Symmetric Local Dirichlet Spaces

被引:8
|
作者
Eldredge, Nathaniel [1 ]
Saloff-Coste, Laurent [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Widder's theorem; Dirichlet space; Dirichlet form; Harnack inequality; Parabolic equation; Non-negative solution; HEAT KERNEL; BROWNIAN-MOTION; PARABOLIC EQUATIONS; UNIQUENESS; FORMS;
D O I
10.1007/s10959-013-0484-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In classical PDE theory, Widder's theorem gives a representation for non-negative solutions of the heat equation on R-n. We show that an analogous theorem holds for local weak solutions of the canonical "heat equation" on a symmetric local Dirichlet space satisfying a local parabolic Harnack inequality.
引用
收藏
页码:1178 / 1212
页数:35
相关论文
共 50 条