Parallel Recording of Single Quantum Dot Optical Emission Using Multicore Fibers

被引:4
|
作者
Munoz-Matutano, G. [1 ]
Barrera, D. [1 ]
Fernandez-Pousa, C. R. [2 ]
Chulia-Jordan, R. [3 ]
Martinez-Pastor, J. [3 ]
Gasulla, I. [1 ]
Seravalli, L. [4 ]
Trevisi, G. [4 ]
Frigeri, P. [4 ]
Sales, S. [1 ]
机构
[1] Univ Politecn Valencia, Inst Telecommun & Multimedia Applicat Res, E-46022 Valencia, Spain
[2] Univ Miguel Hernandez, Dept Ingn Comunicac, Elche 03202, Spain
[3] Univ Valencia, Inst Ciencia Mat, Valencia 46071, Spain
[4] Inst Mat Elect & Magnetism, Natl Res Council, I-43100 Parma, Italy
关键词
Multicore fibers; single quantum dot; spectroscopy;
D O I
10.1109/LPT.2016.2538302
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Single indium arsenide quantum dot emission spectra have been recorded using a four-core, crosstalk-free, multicore fiber placed at the collection arm of a confocal microscope. We developed two different measurement setups depending on the relative configuration of the excitation and collection spots. In the single-matched mode, the emission from the excited area is collected by a single core in the multicore fiber, whereas the three remaining cores capture the emission from neighboring, non-excited areas. This procedure allows for the recording of the quantum dot emission from carrier diffusion between sample positions separated by more than 6 mu m. In the multiple-matched mode, the excitation spot overlaps the four-core emission area. This configuration permits the acquisition of the micro-photoluminescence spectra at different sample positions without scanning. These results show the possibilities offered by multicore fibers for the spectroscopic analysis of single semiconductor quantum dot optical emission.
引用
收藏
页码:1257 / 1260
页数:4
相关论文
共 50 条
  • [1] Single optical mode coupling of single quantum dot spontaneous emission
    Solomon, GS
    Pelton, M
    Yamamoto, Y
    COMPOUND SEMICONDUCTORS 2001, 2002, (170): : 493 - 500
  • [2] Multicore passive single mode optical fibers
    Mergo, P.
    Wojcik, J.
    Klimek, J.
    Skorupski, K.
    Walewski, A.
    LIGHTGUIDES AND THEIR APPLICATIONS III, 2007, 6608
  • [3] Quantum-Communication using Multicore Fibers
    Bacco, Davide
    Cozzolino, Daniele
    Biagi, Nicola
    Zavatta, Alessandro
    Oxenlowe, Leif K.
    2021 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2021,
  • [4] Computational analysis of the amplified spontaneous emission in quantum dot doped plastic optical fibers
    Peng, Xuefeng
    Wu, Pinghui
    Han, Yinxia
    Hu, Guoqiang
    LASER PHYSICS, 2014, 24 (11)
  • [5] Quantum Dot-Doped Optical Fibers
    Zhu, Zixuan
    Sun, Siqi
    Chai, Xiaomei
    Gao, Jianqiao
    Lu, Min
    Wu, Zhennan
    Gao, Yanbo
    Feng, Ting
    Bai, Xue
    Zhang, Yu
    Yan, Fengping
    Yu, William W.
    Ke, Changjun
    LASER & PHOTONICS REVIEWS, 2024, 18 (09)
  • [6] Single and two photon emission from a semiconductor quantum dot in an optical microcavity
    Perea, JI
    Tejedor, C
    Porras, D
    Physics of Semiconductors, Pts A and B, 2005, 772 : 699 - 700
  • [7] Emission characteristics for a single CdSe quantum dot on an optical nanofiber at cryogenic temperatures
    Shafi, K. Muhammed
    Luo, Wei
    Yalla, Ramachandrarao
    Hakuta, Kohzo
    12TH INTERNATIONAL CONFERENCE ON EXCITONIC AND PHOTONIC PROCESSES IN CONDENSED MATTER AND NANO MATERIALS (EXCON 2018), 2019, 1220
  • [8] Optical Amplifiers Using Multicore Erbium Doped Optical Fibers
    Ohtsuka, Takafumi
    Sakuma, Hirotaka
    Suganuma, Takahiro
    Hayashi, Tetsuya
    Hasegawa, Takemi
    Tazawa, Hidehisa
    SEI Technical Review, 2022, (94): : 82 - 87
  • [9] Optical control of the emission direction of a quantum dot
    Luxmoore, I. J.
    Wasley, N. A.
    Ramsay, A. J.
    Thijssen, A. C. T.
    Oulton, R.
    Hugues, M.
    Fox, A. M.
    Skolnick, M. S.
    APPLIED PHYSICS LETTERS, 2013, 103 (24)
  • [10] Modification of spontaneous emission of a single quantum dot
    Solomon, GS
    Pelton, M
    Yamamoto, Y
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2000, 178 (01): : 341 - 344