Multistate quantile regression models

被引:5
|
作者
Farcomeni, Alessio [1 ]
Geraci, Marco [2 ]
机构
[1] Univ Roma Tor Vergata, Dept Econ & Finance, Via Columbia 2, I-00133 Rome, Italy
[2] Univ South Carolina, Arnold Sch Publ Hlth, Dept Epidemiol & Biostat, Columbia, SC 29208 USA
关键词
censored quantiles; cross-infection; duration models; HEALTH-RELATED TRANSITIONS; COMPETING RISKS; PREDICTION; INFERENCE; IMPACT;
D O I
10.1002/sim.8393
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop regression methods for inference on conditional quantiles of time-to-transition in multistate processes. Special cases include survival, recurrent event, semicompeting, and competing risk data. We use an ad hoc representation of the underlying stochastic process, in conjunction with methods for censored quantile regression. In a simulation study, we demonstrate that the proposed approach has a superior finite sample performance over simple methods for censored quantile regression, which naively assume independence between states, and over methods for competing risks, even when the latter are applied to competing risk data settings. We apply our approach to data on hospital-acquired infections in cirrhotic patients, showing a quantile-dependent effect of catheterization on time to infection.
引用
收藏
页码:45 / 56
页数:12
相关论文
共 50 条
  • [1] Quantile Association Regression Models
    Li, Ruosha
    Cheng, Yu
    Fine, Jason P.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 230 - 242
  • [2] Assessing quantile prediction with censored quantile regression models
    Li, Ruosha
    Peng, Limin
    [J]. BIOMETRICS, 2017, 73 (02) : 517 - 528
  • [3] Quantile inference for heteroscedastic regression models
    Chan, Ngai Hang
    Zhang, Rong-Mao
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (06) : 2079 - 2090
  • [4] Optimal Designs for Quantile Regression Models
    Dette, Holger
    Trampisch, Matthias
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (499) : 1140 - 1151
  • [5] Efficient quantile regression for heteroscedastic models
    Jung, Yoonsuh
    Lee, Yoonkyung
    MacEachern, Steven N.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (13) : 2548 - 2568
  • [6] Quantile regression in varying coefficient models
    Honda, T
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 121 (01) : 113 - 125
  • [7] Measurement errors in quantile regression models
    Firpo, Sergio
    Galvao, Antonio F.
    Song, Suyong
    [J]. JOURNAL OF ECONOMETRICS, 2017, 198 (01) : 146 - 164
  • [8] ReModels: Quantile Regression Averaging models
    Zakrzewski, Grzegorz
    Skonieczka, Kacper
    Malkiński, Mikolaj
    Mańdziuk, Jacek
    [J]. SoftwareX, 2024, 28
  • [9] Influence Measures in Quantile Regression Models
    Santos, Bruno R.
    Elian, Silvia N.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (09) : 1842 - 1853
  • [10] Quantile Regression Estimator for GARCH Models
    Lee, Sangyeol
    Noh, Jungsik
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (01) : 2 - 20